El Rol de las Tecnologias Exponenciales en la Innovación Médica

27 06 2013

Introducción a las tecnologias exponenciales y ejemplos de como nos pueden ayudar a innovar y solucionar determinados problemas utilizando imaginación y creatividad.

 

 

Por Christian Assad: Interventional Cardiologist deeply interested in the incorporation of exponential technologies in medicine. Singularity University Alumni, FutureMed e-Magazine editor.

 

Vimeo.com [en línea] San Diego, CA (USA): vimeo.com, 27 de junio de 2013 [ref. junio de 2013] Disponible en Internet: http://vimeo.com/67478522



Células madre modificadas efectivas en enfermedad respiratoria aguda

24 06 2013

 

Investigadores del Instituto de Investigación Biomédica de Bellvitge (IDIBELL) y del Vall d’Hebron Instituto de Investigación (VHIR) han demostrado que la administración de células madre mesenquimales modificadas genéticamente regenera el tejido pulmonar y para el proceso inflamatorio en ratones con lesión pulmonar aguda.

El investigador Josep Maria Aran

El investigador Josep Maria Aran

 

Los resultados del estudio se han publicado en la revista American Journal of Respiratory Cell and Molecular Biology.

 

 

 

 

Lesión pulmonar aguda

La lesión pulmonar aguda y su manifestación más severa, el síndrome de distrés respiratorio agudo, se caracterizan por ser procesos inflamatorios muy graves que dañan los pulmones con una mortalidad de entre el 40% y el 50%. Actualmente no existe ningún tratamiento eficaz más allá de los cuidados paliativos y la ayuda mecánica a la respiración.

“Desde hace unos años se trabaja en la administración de células madre mesenquimales humanas procedentes de tejido adiposo obtenido de liposucciones en diferentes patologías”, ha explicado el investigador del grupo de Genética Molecular Humana del IDIBELL, Josep Maria Aran. “Nosotros hemos comprobado que estas células madre son capaces de llegar fácilmente a los pulmones y allí secretan sustancias antiinflamatorias y factores de crecimiento”.

 

Señal de alarma

Los estudios realizados hasta ahora con estas células han demostrado un efecto positivo. Los investigadores del IDIBELL y del VHIR han introducido una modificación genética en estas células que mejora el tratamiento.

La citoquina IL33 es una proteína que actúa como señal de alarma en estos pacientes. Cuando se inicia el daño a los pulmones, las células secretan esta sustancia que es altamente proinflamatoria y provoca una respuesta muy fuerte del sistema inmunitario.

“Pensamos”, explica Aran, “que si modificábamos genéticamente las células madre mesenquimales para que secreten una molécula antagonista de IL-33 se podría detener el proceso inflamatorio y vimos que, en ratones, el efecto era más positivo que con las células sin modificar: hay regeneración del tejido pulmonar y prácticamente anula el proceso inflamatorio en los pulmones”.

 

El IDIBELL ha firmado un acuerdo de licencia con la empresa vasca Histocell sobre esta modificación genética y actualmente ya están trabajando para que este “medicamento inteligente” pueda llegar a la fase clínica y probarlo con pacientes.

 

Referencia del artículo

Martínez-González I, Roca O, Masclans JR, Moreno R, Salcedo MT, Baekelandt V, Cruz MJ, Rello J,  and Aran JM. Human Mesenchymal Stem Cells Overexpressing the IL-33 Antagonist sST2 Attenuate Endotoxin-Induced Acute Lung Injury. Am J Respir Cell Mol Biol. 2013 May 8 [Epub ahead of print] PMID: 23656573.

 

 

Idibell.cat [en línea] Barcelona (ESP): idibell.cat, 24 de junio de 2013 [ref. 13 de junio de 2013] Disponible en Internet: http://www.idibell.cat/modul/noticias/es/575/celulas-madre-modificadas-geneticamente-son-efectivas-contra-enfermedades-respiratorias-agudas



Disease Diagnosis at the Touch of a Button

20 06 2013

Caltech researchers develop affordable and portable disease diagnostics for the developing world

 

When viruses like HIV/AIDS strike in underdeveloped regions of the world, they often spiral out of control in part because there is no easy way to bring diagnostic equipment to remote areas so that the diseases can be identified, treated, and stopped before they spread. Now, an inexpensive, portable, easy-to-use device, built by a team of Caltech engineers and biologists, promises to speed the diagnosis of HIV/AIDS and other diseases—and improve treatment—in even the most far-flung corners of the world.

The team is led by Caltech biologist and Nobel Laureate David Baltimore, president emeritus and the Robert Andrews Millikan Professor of Biology, and Axel Scherer, the Bernard Neches Professor of Electrical Engineering, Applied Physics and Physics. With two recent grants from the Bill and Melinda Gates Foundation, Scherer and Baltimore have built a new version of a polymerase chain reaction (PCR) device, which generates many copies of a pathogenic nucleic acid, allowing the infection to be detected.

The new PCR machine is small enough to stow in a backpack and is as simple to operate as a DVD player. Its inventors hope that it will make rapid molecular diagnostic techniques and the resulting health-care benefits available and affordable to all who need them.

The device is the result of nearly 10 years of research at Caltech. In 2004, Scherer, a leader in the field of microfluidics, and George Maltezos—then Scherer’s graduate student (PhD ’07), now a Caltech senior scientist—were investigating how to manipulate biological fluids on a chip. While this was an interesting engineering problem, Maltezos began to wonder whether he could apply the microfluidic techniques that he was perfecting to real-world problems. Then the H5N1 bird flu pandemic erupted in Asia, and he and his colleagues had their real-world problem.

The best tool for diagnosing H5N1 is a PCR machine, which, in this case, takes small amounts of viral material and makes a large number of copies so that the virus can be identified. In 2005, a PCR machine cost about $50,000—too expensive for most health clinics in the developing world. That summer, Maltezos built a prototype of a far less expensive PCR machine that went on to perform well in field tests in Thailand, where H5N1 was rampant. Still, it was far from a commercially viable product, in part because it didn’t give results quickly enough.

To improve the performance of the device, Maltezos and Scherer thought that they needed a better handle on the biology behind infectious diseases, so they then teamed up with Baltimore. It made sense to approach Baltimore, who won his Nobel for work in virology and is one of the world’s leading experts on AIDS. If they could build something to detect H5N1, they figured, it would be equally useful for detecting other viruses or diseases, like HIV/AIDS.

By the end of 2006, a newer version of the instrument could evaluate a sample in just 94 seconds—compared to 45 minutes with standard PCR machines—and a company, Helixis, was soon formed to manufacture and sell the technology. Helixis’s first product, a pathogen-detection PCR instrument called the Eco, sold for $13,000 and quickly became a global market contender. In 2010, Helixis was acquired by Illumina, a San Diego–based biotech company, for approximately $105 million.

But while the Eco is fast and relatively cheap, it’s still the size of a microwave oven—not something that you want to lug up a mountain trail or through a rainforest to reach a village with sick people. After the buyout, Maltezos teamed up with Baltimore’s and Scherer’s labs to help build a new-generation PCR machine specifically for use in remote areas of the developing world. With such a simple PCR machine, doctors in an African village, for example, would be able to almost immediately diagnose people suffering from hard-to-diagnose diseases like tuberculosis, or determine whether a patient’s AIDS medications are effective against the virus.

To bring a portable PCR machine to a point-of-care setting in a remote area, Scherer says, “it has to be inexpensive, it has to be robust, and we also have to automate as much as possible.” The newest prototype, which runs off a rechargeable battery and operates at the push of a button, consists of a chip that can analyze a blood sample to spot different pathogens. In addition to tuberculosis and HIV, the machine can diagnose acute lower-respiratory diseases, diarrheal diseases, malaria, and other conditions.

The goal, Maltezos says, is to bring the machine’s cost below $1,000 and each test under $5. The preliminary results from clinical tests show that the device is working well. “Now we need to get it out of the lab and to the people who need it,” he says.

For Baltimore, the motivation behind teaming with Scherer and Maltezos was the chance to make a difference in global health. “I believe that the basic science we do can make an immediate difference in the lives of the people most at risk in the world: the poor people of the underdeveloped countries,” he says. “Our HIV work has that focus, and in Helixis I saw the opportunity to improve the diagnosis of disease in resource-poor environments. Helixis went part of the way toward that goal, and with Axel and George we continue to improve the access to PCR technology.”

Written by Michael Rogers

 

 

 

Caltech.edu [en línea] Pasadena (USA): caltech.edu, 20 de junio de 2013 [ref. 25 de febrero de 2013] Disponible en Internet: http://www.caltech.edu/content/disease-diagnosis-touch-button



Clever gene construct combats metabolic syndrome

17 06 2013

Researchers under ETH-Zurich professor Mar- tin Fussenegger have created a new genetic network that could cure the various symptoms of so-called metabolic syndrome in one fell swoop. It already works in mice.

 

Too much of the wrong food and not enough exercise: sooner or later, an increasing number of people in industrial nations pay the price for their lifestyle. High blood pressure, changed blood fat values, insulin resistance as a precursor to diabetes, and abdominal fat are characteristic of metabolic syndrome, the ‘killer of the twenty-first century’. After all, it is the major risk factor for the development of coronary heart diseases. Today, many more people die of cardiovascular diseases worldwide than from cancer.

Until now, however, there has not been a holistic therapy for metabolic syndrome. Medicine diagnoses and treats every single symptom of metabolic syndrome separately. “However, all these diseases are linked,” says ETH-Zurich professor Martin Fussenegger from the Department of Biosystems in Basel. His research group has now found an approach that could treat all the symptoms of metabolic syndrome at once.

 

Antihypertensive drug triggers cascade

The biotechnologists have constructed a synthetic signaling cascade from different biological molecules that can be triggered with the antihypertensive drug guanabenz and controlled based on the dosage. After the start signal, a chain reaction is set in motion in the cell and culminates with the production of a “super hormone” in the cell nucleus. This includes GLP1, which is connected to leptin via a molecular bridge. GLP1 reduces the blood sugar level; leptin inhibits the feeling of hunger and thus plays a key role in regulating the lipid metabolism.

The combination of the drug guanabenz, which has already been approved for clinical use, and the ‘super hormone’ produced by the synthetic signal cures all three key diseases associated with metabolic syndrome at the same time. The researchers tested their network in a model experiment using diabetic, obese mice suffering from high blood pressure. The animals lack the satiety hormone leptin so are always hungry and eat more than is good for them. The ETH- Zurich biotechnologists inserted an implant with ten million cells, each of which contained the synthetic signalling pathway, into the mice.

 

Construct successful in mice

The animals responded very well to the dose of guanabenz: the GLP1 and leptin concentration rose dramatically and twenty-four hours after the drug was dispensed insulin secretion also increased on account of the GLP1 content. After only three days, the level of cholesterol and other free fatty acids in the blood dropped – a good sign that the animals were beginning to recover from metabolic syndrome. Free guanabenz even lowered the blood pressure, too.

“This application is also realistic for the treatment of metabolic syndrome in humans,” Fussenegger predicts. GLP1 is already administered as an alternative to insulin in the battle against diabetes. Leptin, on the other hand, would have to be substituted with another hormone that has a similar effect. “Leptin has failed to live up to its hopes as a therapeutic agent against obesity, as obese patients have sufficient leptin but have grown resistant to it,” stresses the ETH-Zurich professor. However, he is confident that they can incorporate an alternative satiety hormone into their network. They merely used leptin to demonstrate the principle. It works perfectly well in mice.

In planning and constructing this network, the researchers were able to fall back on the Fussenegger group’s existing expertise. The ingenious scientists had already assembled gene networks for diabetes or gout with similar biological components, the properties of which are renowned. “But we only discovered that the antihypertensive drug guanabenz can be used as a start button by chance,” says the ETH-Zurich professor from Basel.

Even though he is convinced that a gene construct designed in this way could treat metabolic syndrome with its array of symptoms, for the time being Fussenegger is reluctant to make any promises as to when a corresponding product might hit the market.

Original: Ye H, Charpin-El Hamri G, Zwicky K, Christen M, Folcher M, Fussenegger M. Pharmaceutically controlled designer circuit for the treatment of the metabolic syndrome. PNAS online, doi: 10.1073/pnas.1216801110.

 

 

Ethz.ch [en línea] Zurich (SUI): ethz.ch, 17 de junio de 2013 [ref. 17 de diciembre de 2012] Disponible en Internet: http://www.ethz.ch/media/detail_EN?pr_id=1134



New markers for sick hearts

13 06 2013

Two new markers have been discovered for the type of heart failure whereby the heart muscle becomes stiff and unable to fill the heart with blood properly. ‘Estimating the gravity of the stiff type of heart failure is difficult with the regular markers’, explains cardiologist Dirk Lok. ‘But now it has become possible. The new NT-proCNP marker appears to have good predictive values for this condition. Another new marker, Galectin-3, does not only predict this type of heart failure, but also another more recognizable type whereby the heart muscle weakens.’ Lok, a cardiologist in Deventer Hospital, conducted his research in collaboration with the Cardiology Department of the UMCG. He will be awarded a PhD by the University of Groningen on 22 May 2013.

 

There are two types of heart failure. In the most well-known type, the heart muscle weakens and the pump action becomes ineffective. The other type of heart failure involves a stiffening of the heart muscle, which prevents the heart from filling with blood properly. In both cases, blood is not pumped around the body efficiently, causing patients to develop symptoms such as fatigue, shortness of breath, swollen legs and ankles, restless nights and frequent night-time urination. A total number of 150,000 patients in The Netherlands is affected by heart failure and both types occur in the same number of people. Patients suffering from heart failure due to a stiff heart muscle are mostly female, older, have hypertension, diabetes and are overweight. The prognosis is sombre.

Patients

‘Diagnosing heart failure due to a stiff heart muscle is difficult using the regular methods, particularly for GPs’ says Lok. ‘As a result, a large number of people are going through life undiagnosed, despite showing the classic symptoms. The techniques currently used do not always detect heart problems. The new markers will make it much easier to diagnose heart failure.’ Lok measured the values of the Galectin-3 and NT-proCNP markers in large groups of patients with heart failure. He discovered that it was easier to estimate the risk of complications in patients with heart failure due to a stiff heart muscle using both markers than when using the regular marker used up until now.

Better care

‘Measuring markers in the blood to clarify the diagnosis heart failure and predict the progress of the disease has improved patient care considerably over the past few years’, according to Lok. At present, drug treatment is chosen according to the amount by which the marker levels have risen. ‘The introduction of these new markers means that we are ready for the next step: diagnosing the disease at an early stage and providing prompt and targeted treatment. This may lead to fewer hospital admissions for heart failure and possibly a lower mortality rate’, claims Lok.

Curriculum Vitae

Dirk Lok (Groningen, 1953) studied Medicine at the University of Groningen and has worked as a cardiologist in Deventer Hospital since 1984. He conducted his research under the supervision of Prof. D.J. van Veldhuisen and Dr P. van der Meer in a partnership between the Cardiology Department of the University Medical Center Groningen (UMCG) and the cardiology research department of Deventer Hospital. Lok’s thesis is entitled ‘Novel markers in chronic heart failure.’

 

 

rug.nl [en línea] Groningen (NED): rug.nl, 13 de junio de 2013 [ref. 17 de mayo de 2013] Disponible en Internet: http://www.rug.nl/news-and-events/news/archief2013/nieuwsberichten/nieuwe-markers-voor-zieke-harten



New drug could protect from tissue damage following heart attack

10 06 2013

Scientists led by the University of Cambridge and the Medical Research Council (MRC) have developed a new drug that could help reduce the tissue damage that occurs following a heart attack, stroke or major surgery.

By preserving more of the healthy heart tissue, we hope that we can give people who survive a heart attack an improved quality of life

Dr Thomas Krieg from the University of Cambridge, a co-author of the study

 

 

Tests in mice have shown that the compound, called MitoSNO, protects heart tissue from reperfusion injury, which occurs when blood flow is restored suddenly after a prolonged period without oxygen. The research was published in the journal Nature Medicine.

All of the 100,000 people a year in the UK who suffer a heart attack will experience reperfusion injury. During a heart attack, the major vessels that supply the heart with blood become blocked, preventing oxygen from reaching an area of the heart tissue. When the patient reaches hospital, doctors remove the blockage using medicines or surgery and restore blood flow to the heart.

By this stage, some damage will already have occurred to the oxygen-starved tissue. But most of the damage actually happens when the blood supply is returned suddenly, triggering the production of harmful molecules, called free radicals, in the cell’s powerhouse – the mitochondria1.

MitoSNO works by briefly ‘switching off’ the mitochondria in the first few minutes after blood flow is returned to prevent a build-up of free radicals that can kill heart cells. To achieve this, MitoSNO is designed to accumulate inside heart mitochondria rapidly after its injection into the blood.

Dr Mike Murphy from the MRC Mitochondrial Biology Unit, who led the study, said: “When cells are starved of oxygen for any length of time, they begin to shut down. When blood rushes back the mitochondria go into over-drive, churning out free radicals that cause the cells to die. MitoSNO effectively flicks a switch in the mitochondria, slowing down reactivation during those critical first minutes when blood flow returns and protecting the heart tissue from further damage.

“We think a similar process happens in other situations where tissue is starved of oxygen for a prolonged period, for example after a stroke or during surgery where major arteries are clamped to prevent blood loss. We are hopeful that if human trials of MitoSNO are successful it could eventually be used in many other areas of medicine.”

MitoSNO was developed at the MRC Mitochondrial Biology Unit by Dr Murphy’s team in collaboration with Professor Rob Smith of the University of Otago, New Zealand. Together they specialise in creating new molecules that can enter cells and act specifically on mitochondria. The authors say the fact that MitoSNO works when given as blood is restored to the oxygen-deprived heart is a unique strength, because it could be given to heart attack patients when they get to hospital while blood flow to the heart is restored by reopening the blocked artery with a catheter. At the moment there are no established treatments that can be given at this crucial time.

In the study, the researchers tested MitoSNO in a mouse model of heart attack. MitoSNO was given to the mice by injection just before blood flow to the heart was restored. The area of damaged heart tissue was significantly reduced in the mice that had received MitoSNO compared with the control animals, showing that MitoSNO prevents cell death during reperfusion.

Dr Thomas Krieg from the University of Cambridge, a co-author of the study, said:“There have been some important advances in cardiac medicine in recent years and as a result more people now survive a heart attack than ever before. However, we still have no effective treatments to protect against reperfusion injury. By preserving more of the healthy heart tissue, we hope that we can give people who survive a heart attack an improved quality of life. The fact that there were marked reductions in the total area of damaged heart tissue in our study is also significant because, in humans, this has been linked to survival rates.”

The researchers now hope to secure funding to test their new compound in early human studies.

Professor Stephen Hill, Chair of the MRC’s Molecular and Cellular Medicine Board, which funded the research, said: “We’ve known for a long time that the mitochondria are central to the damage caused by reperfusion injury, but the mechanics of this process at a molecular level have been unclear. These important findings demonstrate the importance of investing in basic laboratory research, which underpins our understanding of human health and disease. In addition, this work indicates that a new class of drug developed by MRC scientists may be worth extending to human trials.”

The research was carried out in collaboration with the University of Rochester, UCL and University of Glasgow and was funded by organisations including the MRC, the Biotechnology and Biological Sciences Research Council and the British Heart Foundation. The technology has been patented by MRC Technology on behalf of the MRC and is available for licensing.

Press release provided by the Medical Research Council.

 

 

 

Cam.ac.uk [en línea] Cambridge (UK): cam.ac.uk, 10 de junio de 2013 [ref. 28 de mayo de 2013] Disponible en Internet: http://www.cam.ac.uk/news/new-drug-could-protect-from-tissue-damage-following-heart-attack



Circuito de transfusiones con iBox Seguridad Transfusional

6 06 2013

InterSystems, líder global de software para la sanidad conectada, anuncia que AT4 wireless, empresa líder en consultoría, asistencia Técnica y soluciones IT, ha seleccionado la plataforma de integración InterSystems Ensemble®, para desarrollar iBox Seguridad Transfusional.

 iBox Seguridad Transfusional aumenta la seguridad de los pacientes a quienes se realizan transfusiones sanguíneas identificando, inequívocamente, al paciente, la petición, muestra y bolsa de sangre. El sistema digitaliza los informes de Control Transfusional y las Notificaciones de Reacción Transfusional, permitiendo una monitorización de la trazabilidad de las bolsas de sangre en el circuito.

Gracias a iBOX Seguridad Transfusional se genera una única pulsera identificativa para cada paciente, además de las etiquetas asociadas que identifican las muestras de sangre obtenidas. Cada profesional sanitario del circuito registra los datos relacionados con la trazabilidad de las bolsas de sangre en los diversos servicios hospitalarios. Finalmente, verifica la asignación de cada bolsa con el paciente correcto, antes de realizar la transfusión.

Los sistemas tradicionales, generalmente, basan su operativa en un uso intensivo del papel, ya que no suelen estar informatizados. Por tanto, no permiten el acceso, en tiempo real, a información sobre el paciente y sus necesidades. Es muy habitual que los brazaletes identificativos de los pacientes se hayan escrito a mano o se compongan de diferentes pegatinas con códigos de barras adheridas sucesivamente. Por ello, el paciente suele llevar varios identificadores en función del sistema de control. En estos casos el Banco de Sangre no puede acceder a la información en tiempo real y el registro de trazabilidad, también en papel, es difícil de consultar porque requiere una búsqueda e inversión de tiempo para su revisión.

 

Beneficios destacados

iBox es una solución integrada y móvil, ya que las comprobaciones se efectúan en el lugar donde se encuentra el paciente, cuyo proceso está totalmente digitalizado. Cada paciente, mediante esta solución, sólo ha de llevar un único brazalete identificativo que hace posible el acceso, en tiempo real, a la información que le concierne.

Además de eliminar las tradicionales copias de carbón o multi-copias, el registro de trazabilidad está automatizado y la solución genera informes y notificaciones automáticas, realizando el registro en la Historia Clínica Electrónica. Asimismo, permite la creación de informes de control sobre etiquetados, usuarios e incidencias.

 

Sobre AT4 wireless

AT4 wireless ofrece servicios de consultoría, asistencia Técnica y soluciones IT a una gran variedad de sectores principalmente en el sector Salud, telecomunicaciones, electro medicina y seguridad.

En el sector Salud destaca la experiencia de AT4 wireless en el desarrollo e implantación de soluciones para la mejora de la seguridad y eficiencia de los centros hospitalarios o proveedores de servicios de salud tanto en ámbitos asistenciales como de gestión.

AT4 wireless completa su cartera de servicios ofreciendo servicios de homologación y certificación a la industria de Telecomunicaciones, asegurando así un acceso eficiente a los mercados globales.

Fundada en 1991 con sede en Málaga, España, AT4 wireless cuenta con más de 200 empleados en todo el mundo que ofrecen soporte a clientes también desde sus filiales en Estados Unidos, Taiwán y Chile.

 

Sobre InterSystems

InterSystems Corporation es líder mundial en soluciones innovadoras para la Sanidad Conectada, con sede central en Cambridge, Massachusetts, y oficinas en 25 países.InterSystems HealthShare™ es una plataforma estratégica para la informática sanitaria y la “active analytics” que permite el intercambio de información a través de redes hospitalarias, comunidades, regiones y naciones.

InterSystems Ensemble® es una plataforma para la integración rápida y desarrollo de aplicaciones conectables. InterSystems CACHÉ® es la base de datos más utilizada en aplicaciones clínicas, en todo el mundo. InterSystems DeepSee™ es un software que hace posible embeber, en tiempo real, capacidades analíticas en las aplicaciones transaccionales.

Los productos de InterSystems se utilizan en miles de hospitales y laboratorios de todo el mundo, incluyendo los 10 primeros hospitales del Honor Roll of America’s Best Hospitals, según la clasificación de U.S. News and WorldReport.

Caché puede solicitarse o descargarse a través de la Web de InterSystems, donde está disponible una versión gratuita, totalmente funcional y de duración ilimitada.

 

Acceso.com [en línea] Madrid (ESP): acceso.com, 06 de junio de 2013 [ref. 21 de mayo de 2013] Disponible en Internet: http://www.acceso.com/es_ES/notas-de-prensa/at4-wireless-elige-intersystems-ensemble-para-asegurar-el-circuito-de-transfusiones-con-ibox-seguridad-transfusional/89703/



Dr Herrero: La tecnología casi corre más que nuestra propia imaginación

3 06 2013

Javier Herrero Jover, MD, PhD

Presidente de Alma IT Systems

 

 

Hablamos de la imagen médica digital, ayer con su incorporación en los hospitales parecía que iba a solucionar únicamente  un problema logístico de archivo y gestión radiológica. Poco después  y una vez implantada, se comprobó que si sobre esas imágenes digitalizadas se empleaba tecnología  software donde los ingenieros implementaban  determinados algoritmos, ofrecían al médico unas soluciones que hasta el momento eran impensables, ver un órgano en 3D, planificar  o cuantificar su funcionalidad, calculando por ejemplo la eyección cardiaca o la turbulencia de la sangre en un aneurisma.

Hoy hablamos del  MODELO ESPECÍFICO DEL PACIENTE  (SPM sus siglas en ingles), éste, el SPM ya es una herramienta imprescindible en el cuidado del paciente en múltiples especialidades, hoy podemos conocer no sólo el grado de obstrucción de una coronaria sino cuantificar el tipo de dicha obstrucción ya sea cálcica o de triglicéridos, podemos cuantificar la disminución de un tumor después de su terapia oncológica superponiendo exploraciones diferidas en el tiempo o realizando sustracciones con TACS/ Resonancias magnéticas. También empleamos el SPM en la planificación de una intervención de neurocirugía, en el cálculo  del tamaño de un implante de rodilla o en el caso de la radiología intervencionista,  ayudándonos a navegar y guiarnos hacia el aneurisma para poderlo tratar.

La absoluta especificidad del paciente,  impedía emplear un modelo estándar,  como el empleado en otras ramas del conocimiento ya fuera la automoción, donde el modelo del vehículo introducido en un ordenador sirve para comprobar el comportamiento de sus materiales frente a un cash o el modelo de un avión o la tubería de un oleoducto. En el caso del humano, ha sido gracias a la digitalización de la imagen radiológica que nos ha permitido tener un modelo especifico del paciente y poder empezar a hablar de la medicina personalizada que también se construye sobre o a partir del SPM.

Pero como comentaba al inicio de este artículo, la tecnología corre casi más que nuestra imaginación y digo casi porque tal como apuntaba en una presentación que realizamos en la academia de ingeniería de Madrid en el 2005, el SPM podría servir para que en el futuro se pudieran construir estructuras anatómicas  sobre las cuales pudieran anidar células especificas que dieran determinadas funcionalidades de órganos, como actividades pancreáticas o hepáticas. Pues bien, en la reciente publicación  “Bioresorbable Airway Splint Created with a Three-Dimensional Printer N Engl J Med 2013; 368:2043-2045 May 23, 2013” aparece el empleo del SPM para la construcción de una porción de tráquea a un bebe de 4 meses.  La combinación de la medicina regenerativa con la ingeniería de software  nos dará , estoy seguro en muy poco tiempo, agradables y sorprendentes sorpresas.