Encontradas dos nuevas estrategias para curar la psoriasis

28 04 2014

Experimentos en ratones y muestras derivadas de pacientes sugieren que para combatir la psoriasis es posible actuar con fármacos comerciales sin apenas efectos secundarios. Los trabajos se recogen en las prestigiosas revistas Immunity y Science Translational Medicine.

 

Hace casi diez años, el grupo liderado por Erwin Wagner, actualmente en el Centro Nacional de Investigaciones Oncológicas (CNIO), generó de forma inesperada, a raíz de un trabajo de investigación básica, un ratón modificado genéticamente con síntomas muy similares a los de la psoriasis.

Tras publicar el hallazgo en Nature, los investigadores decidieron utilizar ese modelo de ratón para estudiar mecanismos moleculares que subyacen al desarrollo de esta enfermedad, y buscar terapias innovadoras y eficientes.

Ahora, el mismo grupo ha descubierto dos posibles vías de tratamiento nuevas, basadas en compuestos farmacológicos que ya existen y que, en ratones, no parecen tener efectos secundarios.

Dichas nuevas estrategias son resultado de estudios en profundidad sobre la biología de la enfermedad, que han desvelado algunos de sus agentes causales. Así, las vías de tratamiento estudiadas actúan sobre estos agentes.

Epidermis humana transplantada en ratón con signos de psoriasis (izquierda) y sin alteraciones cuando se trata con bloqueantes del microRNA miR-21 (derecha). / CNIO

Epidermis humana transplantada en ratón con signos de psoriasis (izquierda) y sin alteraciones cuando se trata con bloqueantes del microRNA miR-21 (derecha). / CNIO

 

En uno de los trabajos, publicado en diciembre en la revista Immunity, se demuestra que bloqueando una proteína llamada S100A9 los síntomas de la enfermedad desaparecen. En la otra publicación, que publica esta semana Science Translational Medicine, muestran que esto también sucede si se actúa sobre un ARN no codificante, el micro ARN miR-21.

Como escriben en el primer estudio Helia B. Schonthaler y sus colegas, “durante la última década las terapias biológicas han demostrado ser efectivas contra las enfermedades inflamatorias. Sin embargo, estos tratamientos generan preocupación sobre los efectos secundarios a largo plazo que implican un posible aumento del riesgo de infección y cáncer”.

Por tanto, añaden los autores, “el desarrollo de fármacos eficaces sin estos efectos secundarios y aplicables localmente sería beneficioso para los pacientes de psoriasis”. En concreto, las estrategias inhibidoras de S100A9 “tienen un gran potencial de convertirse en nuevos tratamientos efectivos contra la psoriasis”.

Por otra parte, en el último artículo, con Juan Guinea-Viniegra como primer firmante, se afirma que “bloquear miR-21 podría ofrecer ventajas sobre los actuales tratamientos ya que la eficacia obtenida es la misma, pero los efectos secundarios estén probablemente reducidos” y se resalta que los ratones y muestras de pacientes trasplantadas a ratones en que se ha ensayado esta estrategia “muestran una mejoría terapéuticamente relevante”.

Schonthaler y Guinea-Viniegra pertenecen al grupo de Wagner, director del programa de Biología Celular del Cáncer Fundación BBVA–CNIO. Ambos investigadores participan en los dos trabajos.

 

Identificar las mutaciones importantes

Para los autores, que las dos investigaciones apunten a dianas del todo distintas revela lo complejo y heterogéneo de la psoriasis, una enfermedad en la que intervienen multitud de factores (epi)genéticos y ambientales –y para la que hasta hace poco no existían modelos animales–.

Uno de los éxitos de estos trabajos es que consiguen identificar algunas de las alteraciones clave, y además dan pistas sobre su relación con otras ya encontradas. Por ejemplo, en el modelo animal presentado en 2005 por este grupo, los síntomas de la psoriasis aparecen cuando en la epidermis del ratón se eliminan dos genes; son solo dos, pero regulan la expresión de muchos otros genes.

Ahora Guinea-Viniegra y Schonthaler afirman no solo que “debe haber” una relación entre las dos estrategias que ellos han ensayado, sino también con los genes alterados en el modelo de 2005.

“Se han descrito cientos de genes aumentados o disminuidos en psoriasis, pero solo de pocos de ellos –decenas– se sabe que pueden ser la causa de la enfermedad”, explican. “Nosotros hemos descrito dos nuevos genes/proteínas que se sabía que están aumentados en psoriasis, y ahora demostramos que tienen un papel causal en la enfermedad”.

En ambos trabajos se han empleado sofisticadas técnicas de biología molecular, y muestras humanas. En la investigación liderada por Schonthaler, el primer paso fue comparar piel de lesiones de psoriasis con piel sana.

Para ello, trabajando en colaboración con el grupo de Esteban Daudén, en el Hospital La Princesa, en Madrid, obtuvieron muestras de 19 pacientes del tipo de psoriasis más común, y analizaron las proteínas presentes en su piel.

Identificaron 1.217 proteínas, de las que 214 estaban en cantidades significativamente distintas en piel sana y en las lesiones. En concreto, el complejo de proteínas S100A8-S100A9 era mucho más abundante en la psoriasis.

 

Ya con esa pista, los investigadores estudiaron la importancia de S100A8-S100A9 generando un ratón al que le faltara esa proteína. Y el resultado fue que los síntomas de la psoriasis desaparecieron. Los investigadores analizaron también las proteínas sobre las que actúa S100A8-S100A9, y así han desvelado también otras posibles dianas.

Pero la segunda buena noticia de este trabajo es que demuestra que un fármaco que ya está en el mercado –se usa contra el cáncer de próstata y para evitar el rechazo en trasplantes– bloquea S100A9 y debería ser eficaz contra la psoriasis. “Eso no significa que se vaya a aprobar ya su uso en psoriasis, pero facilita mucho el proceso porque es un fármaco conocido, ya se sabe que es seguro”, señala Schonthaler.

 

Ratones con piel humana

El trabajo liderado por Guinea-Viniegra explora otro nivel de codificación de la información almacenada en el ADN: los microRNAs. Descubiertos hace apenas dos décadas, y sin que se conozca aún en detalle su función ni su papel en enfermedades, los microRNAs son fragmentos pequeños de ácido nucleico que no se traducen a proteínas, pero aún así regulan la expresión de otros genes.

En el caso de la psoriasis, ya se sabía que el microRNA miR-21 era mucho más abundante de lo habitual. Así, para investigar su papel los investigadores inhibieron miR-21 en su ratón modelo, y observaron como los síntomas desaparecían en poco tiempo y sin efectos secundarios aparentes.

Lo siguiente fue trabajar con muestras humanas. Los autores del trabajo injertaron muestras de piel de una decena de pacientes en ratones vivos –una estrategia de xenotransplante que estudia la reacción de un tejido humano in vivo sin poner en peligro a la persona–, y trataron localmente las lesiones con un compuesto que bloquea miR-21.

“Los resultados han sido muy positivos y son esperanzadores, ya que esto supondría una forma totalmente innovadora de tratar la psoriasis”, concluye Guinea-Viniegra.

 

 

Sobre la psoriasis

La psoriasis afecta a hasta el 3% de la población mundial, y puede alterar de forma grave la calidad de vida. No se conoce su causa y a día de hoy no se cura por completo. El objetivo es dar con tratamientos muy eficaces pero no tóxicos.

La última generación de fármacos desarrollados contra ella, las terapias apodadas biológicas, se consideran un gran avance, pero se aplican solo durante periodos limitados por lo grave de sus efectos secundarios –pueden generar desde otras formas de psoriasis, a tuberculosis o leucemia–.

 

 

Referencia bibliográfica:

S100A8-S100A9 protein complex mediates psoriasis by regulating the expression of complement factor C3. Schonthaler HB, Guinea-Viniegra J, Wculek SK, Ruppen I, Ximénez-Embún P, Guío-Carrión A, Navarro R, Hogg N, Ashman K, Wagner EF. Immunity (2013). DOI: 10.1016/j.immuni.2013.11.011

Targeting miR-21 to treat psoriasis. Juan Guinea-Viniegra, María Jiménez, Helia B. Schonthaler, Raquel Navarro, Yolanda Delgado, María José Concha-Garzón, Erwin Tschachler, Susanna Obad, Esteban Daudén, Erwin F. Wagner. Science Translational Medicine (2014). DOI: 10.1126/scitranslmed.3008089

Los trabajos han sido financiados por la Fundación BBVA, el Ministerio de Economía y Competitividad y la Unión Europea.

 

 

 

Agenciasinc.es [on-line] Madrid (ESP): agenciasinc.es, 28 de abril de 2014 [ref. 26 de febrero de 2014] Dispoñible en Internet: http://www.agenciasinc.es/Noticias/Encontradas-dos-nuevas-estrategias-para-curar-la-psoriasis



Médicos e ingenieros diseñan un nuevo dispositivo de trombectomía

24 04 2014

Investigadores de la UPM colaboran con médicos británicos en el diseño y optimización de un dispositivo destinado a la eliminación de coágulos en las arterias de forma más segura.

 

O Centro de Investigación en Tecnologías Ferroviarias (CITEF) de la Universidad Politécnica de Madrid (UPM), una de cuyas líneas de trabajo es el empleo de diferentes técnicas de simulación en sistemas multi-dominio, está trabajando en la mejora de un dispositivo para la extracción de coágulos por medio de absorción que pueda funcionar de manera efectiva sin ocasionar posibles embolias por la rotura de dicho coágulo. El trabajo está realizándose en colaboración con un equipo médico de Reino Unido, donde se están llevando a cabo los ensayos de laboratorio para la modelización y caracterización del dispositivo.

Un accidente cerebrovascular sucede cuando el flujo de sangre a una parte del cerebro se detiene; en caso de una detención durante más de unos pocos segundos, el cerebro no puede recibir sangre y oxígeno, causando daños permanentes. Según la Organización Mundial de la Salud (OMS), más de 15 millones de personas mueren en el mundo a causa de enfermedades vasculares cerebrales. En concreto, los accidentes cerebrovasculares representan una de las primeras causas de muerte y la causa principal de invalidez en adultos, siendo una de las patologías neurológicas de mayor repercusión social, con más de 120.000 nuevos casos cada año solo en España.

Los tratamientos para este tipo de accidentes pueden dividirse en agentes químicos y en dispositivos mecánicos de trombectomía. Los propósitos de cualquier dispositivo mecánico de extracción pueden resumirse en efectuar la extracción del coágulo formado en el interior de las arterias y en restablecer el flujo sanguíneo de la arteria. Desde hace años se han desarrollado numerosos dispositivos, muchos de los cuales operan en la periferia del sistema vascular; sin embargo, existen relativamente pocos que hayan sido empleados en la vasculatura cerebral. Uno de los principales problemas de estos dispositivos es que pueden producir embolias aguas abajo o rupturas de las paredes arteriales debido a sus partes móviles.

 

 

El desarrollo de nuevos dispositivos que permitan eliminar de forma eficaz la presencia de estos coágulos se sustenta por el elevado porcentaje de población afectado y en los diferentes riesgos existentes, observándose la posibilidad de diseñar un dispositivo basado en absorción, sin partes móviles y con un diseño simple, que pueda funcionar como un extractor efectivo de coágulos sin ocasionar posibles embolias por rotura de dicho coágulo.

El nuevo dispositivo de extracción que se está desarrollando se basa en el dispositivo trombectómico por absorción denominado GP, inventado en Reino Unido, que carece de partes móviles. Tomando como punto de partida el diseño inicial y de acuerdo con el equipo médico británico, investigadores del CITEF están procediendo a la introducción de mejoras y a la optimización del mismo mediante el empleo de diferentes técnicas de simulación, para lo cual se está trabajando en la modelización y caracterización del dispositivo médico a partir de ensayos en laboratorio llevados a cabo en Reino Unido. De esta forma, se está trabajando en la optimización de la geometría del dispositivo, en la valoración del rango óptimo de presiones ante diferentes situaciones y características del coágulo, en la distribución del flujo en el entorno del mismo y en el proceso de eliminación del coágulo de la pared arterial.

 

ROMERO, G; HIGUERA, I; MARTÍNEZ, ML; PEARCE, G; PERKINSON, N; ROFFE, C; WONG, J. “Computational Modeling of a New Thrombectomy Device for the Extraction of Blood Clots”. Advances in Experimental Medicine and Biology, Vol. 680. 2010. DOI: 10.1007/978-1-4419-5913-3_69

PEARCE, G; BROOKER, L; MIRZA, N; JONES, T; ROFFE, C; WONG, J; PERKINSON, N; ROMERO, G; MARTINEZ, ML; HIGUERA, I. “Bond graph modelling of the in vitro performance of the GP thrombectomy Device in combination with local delivery of alteplase”. International Journal of Stroke, Vol. 5(s3). 2010. DOI: 10.1111/j.1747-4949.2010.00492.x

ROMERO, G; MARTÍNEZ, ML; MAROTO, J; FÉLEZ, J. “Blood Clot Simulation Model by Using the Bond-Graph Technique”. The Scientific World Journal , Volume 2013. DOI: 10.1155/2013/519047

ROMERO, G; MARTÍNEZ, ML; PEARCE, G; WONG, J. “Analysis of the GPATD: Geometrical Influence on Blood Clot Extraction Using CFD Simulation”. UkSim-AMSS 16th International Conference on Modelling and Simulation. 26-28 March 2014. Cambridge (UK).

 

Enlaces de interés:

“The ‘GPMechanical Thrombectomy Device”. Journal of Stroke and Cerebrovascular Diseases 18(4), 2009, pp. 288-293.

 

 

 

Upm.es [on-line] Madrid (ESP): upm.es, 24 de abril de 2014 [ref. 07 de abril de 2014] Dispoñible en Internet: http://www.upm.es/institucional/UPM/CanalUPM/Noticias/2d168776be125410VgnVCM10000009c7648aRCRD



European study reveals new causes of mouth and throat cancer

21 04 2014

Poor oral health and failure to have regular dental checks could increase the risk of mouth and throat cancer, according to a pan-European study.

The research also suggests – based on a small number of tumour patients – that excessive use of mouthwash may also cause this particular form of cancer. Excessive use is defined as more than three times a day.

It has been established for some time that smoking and heavy alcohol consumption, particularly in combination, are strongly related to mouth and throat cancers. Low socio-economic status is also recognised as a contributory factor.

Now, however, a new study carried out by researchers at the University of Glasgow Dental School – as part of a Europe-wide collaboration co-ordinated by the International Agency for Research on Cancer and led by the Leibniz Institute for Prevention Research and Epidemiology – BIPS in Bremen, Germany  – has identified new risk factors for upper aerodigestive tract cancer (cancer of the mouth, larynx, pharynx and esophagus).

The study of 1,962 patients with mouth and throat cancers, with a further 1,993 people used as comparison control subjects, was conducted in 13 centres across nine countries and supported by EU funding.

Prof. Wolfgang Ahrens, Deputy Director of the BIPS, said: “These results are really important. Up until now, it was not really known if these dental risk factors were independent of the well known risks for mouth and throat cancers – smoking, alcohol and low socioeconomic status.”

The researchers were able to strip out the causation factors of smoking, alcohol and socio-economic factors, and still found there was a connection between poor oral health and increased risk of mouth and throat cancers.

The findings are highly “nuanced” and there is an interconnectedness of many of the risk factors, he stressed, but there was now evidence that poor oral health and poor dental care were also part of the picture.

The definition of poor oral health included people who had complete or part dentures, people with persistently bleeding gums.

“People should not assume that if they wear dentures and have none of their own teeth left, they have no need to see a dentist,” said Dr David Conway, Clinical Senior Lecturer at the University of Glasgow Dental School and one of the senior authors of the study. “On the contrary, even if you have got dentures, you should make sure you go for regular check-ups,” he said.

People with poor dental care were defined as those who hardly ever or never brushed their teeth or visited the dentist. The frequency of dental visits should be determined by a dentist’s risk assessment and if people fell into the low risk category it could be once a year or even every two years, said Dr Conway.

“It is not a case of ‘one size fits all’. Visits could be six-monthly, but certainly not five-yearly,” Dr. Conway added.

The possible role of mouthwash as a causative factor would require further research, said Professor Ahrens. There might be a relationship between excessive use of mouthwash and people who used it to mask the smell of smoking and alcohol. Nevertheless, the researchers found that “frequent use of mouthwashes (3-plus times per day) was associated with an elevated risk of developing mouth and throat cancer”, although they were unable to analyse the types of mouthwash used many years ago by participants in the study.

Dr Conway said: “I would not advise routine use of mouthwash, full stop. There are occasions and conditions for which a dentist could prescribe a mouthwash – it could be that a patient has a low salivary flow because of a particular condition or medicine they are taking. But for me, all that’s necessary in general is good regular brushing with a fluoride toothpaste and flossing combined with regular check-ups by a dentist.”

The research group, which includes collaborators from Germany, UK, Estonia, Switzerland, Greece, the Czech Republic, Italy, Norway, Spain, USA, Croatia, Ireland and France, have recently received a new tranche of funding from the EU and WHO’s International Agency for Research of Cancer, which will be used to research prognostic factors as well as risk factors.

 

 

Find out more:

 

Oral health, dental care and mouthwash associated with upper aerodigestive tract cancer risk in Europe: the ARCAGE (Alcohol-Related Cancers and Genetic-susceptibility in Europe) study. Wolfgang Ahrens; Hermann Pohlabeln; Ronja Foraita; Mari Nelis; Pagona Lagiou;Areti Lagiou; Christine Bouchardy; Alena Slamova; Miriam Schejbalova; Franco Merletti; Lorenzo Richiardi; Kristina Kjaerheim; Antonio Agudo; Xavier Castellsague; Tatiana Macfarlane; Gary J Macfarlane; Yuan-Chin Amy Lee; Renato Talamini; Luigi Barzan; Cristina Canova; Lorenzo Simonato; Peter Thomson; Patricia McKinney; Alex D McMahon; Ariana Znaor; Claire M Healy; Bernard E McCartan; Andres Metspalu; Manuela Marron; Mia Hashibe; David I Conway; Paul Brennan.

 

Published in Oral Oncology http://www.oraloncology.com/article/PIIS1368837514000657/abstract

 

 

Gla.ac.uk [on-line] Glasgow (UK): gla.ac.uk, 21 de abril de 2014 [ref. 04 de abril de 2014] Dispoñible en Internet: http://www.gla.ac.uk/news/headline_320819_en.html



Tamiflu: an analysis of all the data

17 04 2014

Was the government right to spend half a billion pounds in stockpiling the antiviral drugs Tamiflu and Relenza in preparation for a flu pandemic?

These drugs were handed out via a phoneline during the swine flu pandemic of 2009 as part of a wider public health strategy.

Professor Carl Heneghan of Oxford University’s Department of Primary Care Health Sciences and colleagues in the independent Cochrane Collaboration are clear that the money was wasted. They argue that the decision to stockpile the drugs might have been different had we had access to all the clinical data on their effectiveness.

Now we do have that evidence, and Carl says: ‘There is no credible way these drugs could prevent a pandemic.Speaking at a media briefing at the Science Media Centre in London, he said the money spent on stockpiling had been ‘thrown down the drain’.

Since 2009, the Cochrane researchers have had a long running battle with the drug firms that manufacture Tamiflu and Relenza (Roche and GSK, respectively) to get unconditional access to their full data. They finally received everything last year, after first GSK then Roche said they would provide the materials – a significant development in the campaign to increase openness and accessibility of complete trial data.

The Cochrane group has been significant players, along with the AllTrials campaign, the BMJ medical journal, Ben Goldacre and others, in changing the whole approach to this issue among researchers, journals, drug firms and regulators. The simple argument is that if we are to make the right decision on what are the best drugs – considering their safety, effectiveness and the balance of benefits they offer in treating conditions over their side-effects – we need to have all the evidence available.

The researchers have now made that assessment for Tamiflu in the prevention and treatment of flu. They have reviewed a phenomenal amount of material, and with the BMJ and the Cochrane Collaboration, have published their conclusions today. They call on government and health policy decision makers to review guidance on the use of Tamiflu in light of their new evidence.

They found that Tamiflu is effective – but it shortens symptoms of flu by only around half a day on average. And importantly, they say, there is no good evidence to support claims that it reduces complications of influenza or admissions to hospital.

Then there are the side effects. Using Tamiflu to treat flu, the evidence confirms an increased risk of suffering from nausea and vomiting.

When Tamiflu is used to prevent flu, the drug can reduce the risk of people suffering symptomatic influenza. But there was an increased risk of headaches, psychiatric disturbances, and kidney events.

The review authors, Drs Tom Jefferson, Carl Heneghan and Peter Doshi, conclude that there are insufficient grounds to support the stockpiling of Tamiflu for mass use in a pandemic. From the best conducted randomised trials, there just isn’t enough evidence on the crucial elements of reducing serious complications of flu that can lead to hospitalisation and death, and the prevention of spread of flu. On the other hand we know there would be side-effects.

Not all scientists agree on the assessment of the balance of benefits of these antivirals versus their side-effects. Virologist Professor Wendy Barclay at Imperial College London believes the shorter time that symptoms last is important: ‘Although one day does not sound like a lot, in a disease that lasts only 6 days, it is…We have only two drugs with which we can currently treat influenza patients and there is some data to suggest they can save lives. It would be awful if, in trying to make a point about the way clinical trials are conducted and reported, the review ended up discouraging doctors from using the only effective anti-influenza drugs we currently have.

Roche, the manufacturers of Tamiflu, fundamentally disagree with the overall conclusions of the Cochrane review and criticised some of the report’s methodology. In media reports, UK Medical Director Dr Daniel Thurley has said: ‘Roche stands behind the wealth of data for Tamiflu and the decisions of public health agencies worldwide, including the US and European Centres for Disease Control & Prevention and the World Health Organization.

Indeed, Roche have pointed to a large observational trial in the Lancet Respiratory Medicine that they funded which recently reported a reduction in deaths among those hospitalised with swine flu H1N1, though there are some who disagree with that analysis too.

So what to make of all of this? An editorial in the Guardian concludes: ‘The only way to resolve the argument is proper science. That means transforming clinical trials, harmonising the way they are carried out. It has happened with malaria drugs, and it is happening with HIV. The industry must allow access to their data. Confident that like is compared with like, trials can then be subjected to meta-analysis, allowing statisticians to drill down into sub-populations to establish when a drug performs most effectively.

The editorial points to the need to be able to react swiftly and carry out good research actually during pandemics, as former Oxford University professor and now director of the Wellcome Trust, Jeremy Farrar, argued in the paper last month.

What has really changed is the ability to have these discussions based on all of the evidence. There is a real shift in the level of scrutiny and the analyses that are now possible with access to all clinical trial data (although dealing with all these reams of data also brings new challenges too). That is a phenomenal change and a real achievement by the Cochrane researchers.

David Spiegelhalter, Winton Professor of the Public Understanding of Risk at the University of Cambridge, comments: ‘This is a ground-breaking review. Since important studies have never been published, the reviewers have had to go back to clinical trial reports comprising over 100,000 pages: the effort to obtain these is a saga in itself. The poor quality of these reports clearly made extracting relevant data a massive struggle, with many pragmatic assumptions having to be made, but the final statistical methods are standard and have been used in hundreds of Cochrane reviews. Let’s hope that in future high-quality data can be routinely obtained and this type of review becomes unnecessary.

By Jonathan Wood

 

Ox.ac.uk [on-line] Oxford (UK): ox.ac.uk, 17 de abril de 2014 [ref. 10 de abril de 2014] Dispoñible en Internet: http://www.ox.ac.uk/media/science_blog/140410.html



Una plataforma biocomputacional analizará células cancerosas y bacterias

14 04 2014

Útil para poder predecir el comportamiento que seguirán las células cancerosas y las bacterias ante un tratamiento específico

Científicos de la Universidad de Costa Rica (UCR) crearán una plataforma biocomputacional que procese rápidamente toda la información de las investigaciones que tratan de combatir la resistencia de las células cancerosas a la quimioterapia y de las bacterias a los antibióticos.

 

El investigador principal del proyecto es el Dr. Francisco Siles Canales, coordinador del Laboratorio de Investigación en Reconocimiento de Patrones y Sistemas Inteligentes. FOTO: UCR.

El investigador principal del proyecto es el Dr. Francisco Siles Canales, coordinador del Laboratorio de Investigación en Reconocimiento de Patrones y Sistemas Inteligentes. FOTO: UCR.

 

En el combate de las células cancerígenas y de las bacterias los científicos se topan con el problema de que estos agentes infecciosos son resistentes a las terapias que se aplican para eliminarlos y curar el mal.
En el caso de las células cancerígenas, poseen mecanismos autodefensivos que hacen que algunas sobrevivan a la quimioterapia aunque queden dañadas en su Ácido Desoxirribonucleico (ADN).

Las bacterias se vuelven más resistentes a los antibióticos que van enfrentando, por lo que constantemente hay que estar creando nuevos y más poderosos.

Para poder predecir el comportamiento que seguirán las células cancerosas y las bacterias ante un tratamiento específico, es necesario procesar una cantidad inmensa de información, para lo cual se requiere una poderosa capacidad de procesamiento computacional.

Contar con este recurso es lo que se propone el equipo interdisciplinario de científicos agrupados en la Red de Investigación en Biocomputación (RIB), disciplina que aplica métodos computacionales, matemáticos e ingenieriles a problemas biológicos.

El investigador principal del proyecto es el Dr. Francisco Siles Canales, coordinador del Laboratorio de Investigación en Reconocimiento de Patrones y Sistemas Inteligentes (PRIS-Lab) de la Escuela de Ingeniería Eléctrica de la Universidad de Costa Rica (UCR).

También participan investigadores de la Facultad de Microbiología y del Centro de Investigación en Enfermedades Tropicales (CIET) de la UCR. Asimismo investigadores de la Escuela de Salud Pública y del Centro de Investigaciones en Tecnologías de la Información y Comunicación (CITIC).

 

Matemáticas, células y bacterias

El Dr. Siles explicó que este equipo multidisciplinario está avocado a “construir un modelo matemático que describa el proceso defensivo a los tratamientos por parte de estos agentes que causan enfermedades, para luego implementarlo en la computadora”.

“Es decir que no se quede como un modelo teórico, sino que ese modelo teórico se implemente y que podamos validarlo experimentalmente con los colegas de microbiología. Nosotros proponemos el modelo analítico, lo simulamos en la computadora, lo llevamos al laboratorio y vemos que tan cierto es y lo que vaya saliendo mal lo vamos ajustando.”

Para comprobar la efectividad de las predicciones del modelo matemático se debe trabajar inicialmente con líneas de bacterias y de células cancerosas que estén ampliamente estudiadas y de las cuales se tenga mucha información.

Sobre las células, uno de los miembros del equipo multidisciplinario, el microbiólogo Steve Quirós Barrantes, dijo que van “a trabajar con líneas cancerosas que están sumamente estudiadas, de las cuales se conocen muy bien los detalles y están muy bien descritas, porque llevan ya muchos años de análisis por parte de la comunidad científica.”

Explicó que esa numerosa información se utilizará para desarrollar la plataforma y comprobar si el modelo matemático logra predecir acertadamente el comportamiento de determinado cultivo de células cancerosas al aplicársele alguna quimioterapia específica.

Si se comprueba en el laboratorio que la evolución de las celular es igual al que predijo la plataforma biocomputacional, entonces se podrá aplicar para prever el comportamiento de otras células o bacterias en estudio.

El proyecto se denomina “Plataforma biocomputacional de análisis de datos genómicos para superar la resistencia a la terapia contra el cáncer y las infecciones microbianas. A finales del 2013 ganó recursos del Fondo de Incentivos que concede anualmente el Ministerio de Ciencia, Tecnología y telecomunicaciones (MICITT).

El Dr. Siles coordina también la Red de Investigación en Computación Científica, creada también por investigadores de la UCR en colaboración con el Colaboratorio Nacional de Computación Avanzada (CNCA), del Centro Nacional de Alta Tecnología (CeNAT), así como también otros centros y laboratorios de investigación costarricenses y extranjeros.

 

 

Dicyt.com [on-line] Salamanca (ESP): dicyt.com, 14 de abril de 2014 [ref. 11 de abril de 2014] Dispoñible en Internet: http://www.dicyt.com/noticias/una-plataforma-biocomputacional-analizara-celulas-cancerosas-y-bacterias



Artificial Organs May Finally Get a Blood Supply

10 04 2014

Artificial tissue has always lacked a key ingredient: blood vessels. A new 3-D printing technique seems poised to change that.

 

Living layers: Harvard researchers demonstrate their method for creating vascularized tissue constructs by printing cell-laden inks in a layered zig-zag pattern.

Living layers: Harvard researchers demonstrate their method for creating vascularized tissue constructs by printing cell-laden inks in a layered zig-zag pattern.

In what may be a critical breakthrough for creating artificial organs, Harvard researchers say they have created tissue interlaced with blood vessels.

Using a custom-built four-head 3-D printer and a “disappearing” ink, materials scientist Jennifer Lewis and her team created a patch of tissue containing skin cells and biological structural material interwoven with blood-vessel-like structures. Reported by the team in Advanced Materials, the tissue is the first made through 3-D printing to include potentially functional blood vessels embedded among multiple, patterned cell types.

In recent years, researchers have made impressive progress in building tissues and organ-like structures in the lab. Thin artificial tissues, such as a trachea grown from a patient’s own cells, are already being used to treat patients (see “Manufacturing Organs). In other more preliminary examples, scientists have shown that specific culture conditions can push stem cells to grow into self-organized structures resembling a developing brain, a bit of a liver, or part of an eye (see “Researchers Grow 3-D Human Brain Tissues,” “A Rudimentary Liver Is Grown from Stem Cells,” and “Growing Eyeballs). But no matter the method of construction, all regenerative projects have run up against the same wall when trying to build thicker and more complex tissues: a lack of blood vessels.

Lewis’s group solved the problem by creating hollow, tube-like structures within a mesh of printed cells using an “ink” that liquefies as it cools. The tissue is built by the 3-D printer in layers. A gelatin-based ink acts as extracellular matrix—the structural mix of proteins and other biological molecules that surrounds cells in the body. Two other inks contained the gelatin material and either mouse or human skin cells. All these inks are viscous enough to maintain their structure after being laid down by the printer.

A third ink with counterintuitive behavior helped the team create the hollow tubes. This ink has a Jell-O-like consistency at room temperature, but when cooled it liquefies. The team printed tracks of this ink amongst the others. After chilling the patch of printed tissue, the researchers applied a light vacuum to remove the special ink, leaving behind empty channels within the structure. Then cells that normally line blood vessels in the body can be infused into the channels.

 

Building actual replacement tissues or organs for patients is a distant goal, but one the team is already weighing. “We think it’s a very foundational step, and we think it’s going to be essential toward organ printing or regeneration,” says Lewis, who is member of the Wyss Institute for Biologically Inspired Engineering at Harvard University.

The smallest channels printed were about 75 micrometers in diameter, which is much larger than the tiny capillaries that exchange nutrients and waste throughout the body. The hope is that the 3-D printing method will set the overall architecture of blood vessels within artificial tissue and then smaller blood vessels will develop along with the rest of the tissue. “We view this as a method to print the larger vessels; then we want to harness biology to do the rest of the work,” says Lewis.

 

 

By Susan Young Rojahn

 

Technologyreview.com [on-line] Cambridge, MA (USA): technologyreview.com, 10 de abril de 2014 [ref. 06 Marzo 2014] Dispoñible en Internet: http://www.technologyreview.com/news/525161/artificial-organs-may-finally-get-a-blood-supply/



Observing behavior of single molecules in real time

7 04 2014

Stanford scientists develop technique for observing behavior of single molecules in real time

The new technique allows scientists to observe single molecules of protein or DNA as they bind with other molecules, and could lead to better drug designs.

 

Nearly every biological or chemical reaction that makes life possible involves single molecules interacting in the watery solution that sloshes in and around cells.

Now, a Stanford chemistry professor and his graduate student have developed a technique for observing these processes as they happen in real time.

W.E. Moerner, a professor of chemistry, specializes in single molecule fluorescence, a field that involves studying how biomolecules – such as DNA and enzymes – work in cells to carry out the processes that are critical to life. The new advance describes how Moerner and his graduate student, Quan Wang, modified an ABEL (Anti-Brownian ELectrokinetic) trap, a machine invented in Moerner’s lab that uses electric fields to manipulate individual small molecules from the light they emit, to isolate a single strand of DNA and observe how it binds to other DNA, in aqueous solution.

 

Stanford researchers have developed a technique to observe behavior of single molecules of protein or DNA in real time.

Stanford researchers have developed a technique to observe behavior of single molecules of protein or DNA in real time.

The work is detailed in the journal Nature Methods.

Getting this process started takes a little bit of luck, Wang said, as they must wait until a single molecule happens to be in the vicinity of the trap. This all happens at an incredibly tiny scale. The trap covers about a square centimeter, but the molecules are just 1 nanometer long. (For perspective, that’s trapping a single grain of pollen on a football field, and then, without ever touching it, studying its behavior and characteristics.)

Once a lone molecule has entered the trap, its motion comes under continuous surveillance. Although the molecule doesn’t want to sit still, every time it attempts to escape, the ABEL trap automatically applies electric fields to push it back.

Using physical analysis and computational tricks from machine learning, Wang developed an algorithm to convert the observed single-molecule motions inside the trap into information about the molecule’s size and electric charge. From this, the researchers can determine whether the target molecule has interacted with another molecule.

In the case of DNA, if it begins to hybridize – that is, if it begins to bond to a complementary strand of DNA – the readings from the trap will show that the trapped DNA has an increase in both size and charge. When the process reverses a few instants later – that is, when the DNA melts and its complementary strand falls off – the trapped molecule’s size and charge change back correspondingly.

It is really quite amazing to be able to trap a single short piece of single-stranded DNA, to watch it for many seconds and directly observe a partner strand bind and unbind,” Moerner said. “This is really an essential process.

The researchers conducted similar tests using proteins, and Wang said that the technology in its current state can easily be applied to many different types of molecules to study other binding processes.

We’ve done the proof of concept for the method, and soon we want to apply it to two very specific problems and get some science out of it,” said Wang, who is a graduate student in electrical engineering.

The first involves drug design. Drugs target diseases by binding to receptor molecules on cells, and the drug’s effectiveness often depends on how well and for how long it binds to its receptor. By gauging the size and total charge of the molecules as they form a complex, the trap can directly measure how long it takes for the drug to find its receptor and how long the complex stays together. This information could guide scientists toward designing drugs that better match their target receptor.

Another application is to study the role protein aggregation plays in various diseases. As people age, proteins can becomestickyand accumulate, a hallmark of several diseases, including Huntington’s. The trap provides a direct way to study the size distribution of these proteins and how they aggregate; understanding this effect could lead to treatments that inhibit it.

Other students and postdoctoral scholars in Moerner’s group are working to make the trap respond even more quickly, to perform more optimally in other situations, or to study different properties of single molecules. Moerner said that the interdisciplinary makeup of his group (including him; he holds a degree in electrical engineering as well as in chemistry) is critical for understanding all the different facets of this work, and then for smart implementation of it.

We use light to probe molecules – that’s physics and chemistry,” Moerner said. “And we apply it to biology and biomedical systems. But at the core is precise measurement, extracting as much information as possible from a single object, and that can be done with concepts from electrical engineering.

It’s a natural thing at Stanford for students in one department to do thesis research in another. It’s one of the wonderful aspects at Stanford, and it can lead to wonderful work such as this.

 

BY BJORN CAREY

 

 

News.stanford.edu [on-line] Stanford, CA (USA): news.stanford.edu, 07 de abril de 2014 [ref. 14 Marzo 2014] Dispoñible en Internet: http://news.stanford.edu/news/2014/march/dna-binding-observed-031414.html

 



Ayudando al cerebro a autoregenerarse

3 04 2014

Una nueva estrategia en medicina regenerativa puede promover la recuperación de las lesiones cerebrales

 

Investigadores en regeneración de tejidos del Instituto de Bioingeniería de Cataluña (IBEC), de la Universidad de Barcelona (UB) y de la Universidad Politécnica de Cataluña (UPC) han desarrollado un implante que estimula la regeneración del tejido cerebral, especialmente en casos de lesiones pre- y postnatales.

 

Imagen: Andamios de nanofibras aleatorias (izquierda) y alineadas (derecha) tras una semana de la implantación en el córtex cerebral de ratones. Las células gliales (verde) y los vasos sanguíneos (rojo) penetran en el andamio alineado y no en las fibras aleatorias (rayas blancas).

Imagen: Andamios de nanofibras aleatorias (izquierda) y alineadas (derecha) tras una semana de la implantación en el córtex cerebral de ratones. Las células gliales (verde) y los vasos sanguíneos (rojo) penetran en el andamio alineado y no en las fibras aleatorias (rayas blancas).

 

En el estudio, liderado por la Dra. Soledad Alcántara del Grupo de Desarrollo Neural de la UB, los científicos han descubierto que estos implantes biodegradables hechos de nanofibras de ácido poliláctico (PLA) reproducen algunos aspectos del entorno natural del cerebro embrionario y estimulan la regeneración del tejido.

Estos implantes, conocidos en ingeniería de tejidos comoandamios”, liberan L-lactato, una molécula que actúa como señal celular común para inducir la angiogénesis (formación de vasos sanguíneos nuevos). También reproducen el nicho neurogénico, es decir, el entorno en el que los progenitores neurales generan nuevas neuronas y células de glía, que migran siguiendo los patrones de migración que tienen lugar durante el desarrollo cerebral.

“Las lesiones cerebrales son la causa común de muchas discapacidades, debido a la pérdida de tejido nervioso y a la formación de cavidades que inhiben el crecimiento de las neuronas”, dice Zaida Álvarez miembro del grupo de Biomateriales para Terapias Regenerativas del IBEC y del grupo de Desarrollo Neural de la UB y primera autora del artículo. “Para encontrar estrategias regenerativas efectivas que promuevan la recuperación del cerebro después de una lesión traumática tenemos que focalizarnos en resolver los obstáculos actuales: la débil integración del implante y la supervivencia celular.”

Cuando los andamios de PLA diseñados en el IBEC fueron implantados en ratones recién nacidos, el L-lactato liberado durante la degradación actuó como fuente de energía alternativa motivando el crecimiento de las neuronas y activando a los progenitores endógenos. Las fibras utilizadas para construir laestructurareprodujeron la organización natural en 3D, así como la topología de la glía radial embrionaria, lo que favoreció la migración neuronal y la vascularización durante el crecimiento cerebral.

“Mediante la mejora de los implantes ha sido posible regular los parámetros biofísicos y metabólicos que lideran la restauración de la función del tejido nervioso tras una lesión, sin la necesidad de células exógenas, factores de crecimiento o manipulaciones genéticas,” dice Zaida Álvarez. “Aunque todavía queda un largo camino por recorrer antes de que estos experimentos se puedan trasladar a la clínica –tenemos que ver si hay una respuesta regenerativa similar en ratones adultos– nuestros resultados abren perspectivas esperanzadoras y apasionantes en el diseño de dispositivos implantables libres de células.”

 

Artículo de Referencia: Álvarez, Z., Castaño, O., Castells, A.A., Mateos-Timoneda, M.A., Planell, J.A., Engel, E. & Alcántara, S. (2014). Neurogenesis and vascularization of the damaged brain using a lactate-releasing biomimetic scaffold. Biomaterials, 35, 17, 4769–4781

 

 

Ibecbarcelona.eu [on-line] Barcelona (ESP): ibecbarcelona.eu, 03 de abril de 2014 [ref. 25 Marzo 2014] Dispoñible en Internet: http://www.ibecbarcelona.eu/NOTICIAS-DE-INVESTIGACION/helping-the-brain-rebuild-itself.html