Freshly squeezed vaccines

4 06 2015

Microfluidic cell-squeezing device opens new possibilities for cell-based vaccines.

MIT researchers have shown that they can use a microfluidic cell-squeezing device to introduce specific antigens inside the immune system’s B cells, providing a new approach to developing and implementing antigen-presenting cell vaccines.

Such vaccines, created by reprogramming a patient’s own immune cells to fight invaders, hold great promise for treating cancer and other diseases. However, several inefficiencies have limited their translation to the clinic, and only one therapy has been approved by the Food and Drug Administration.

While most of these vaccines are created with dendritic cells, a class of antigen-presenting cells with broad functionality in the immune system, the researchers demonstrate in a study published in Scientific Reports that B cells can be engineered to serve as an alternative.

“We wanted to remove an important barrier in using B cells as an antigen-presenting cell population, helping them complement or replace dendritic cells,” says Gregory Szeto, a postdoc at MIT’s Koch Institute for Integrative Cancer Research and the paper’s lead author.

Darrell Irvine, a member of the Koch Institute and a professor of biological engineering and of materials sciences and engineering, is the paper’s senior author.


As cells pass through the CellSqueeze device at high speed, narrowing microfluidic channels apply a squeeze that opens small, temporary holes in the cells’ membranes. As a result, large molecules — antigens, in the case of this study — can enter before the membrane reseals. Courtesy of SQZ Biotech

A new vaccine-preparation approach

Dendritic cells are the most naturally versatile antigen-presenting cells. In the body, they continuously sample antigens from potential invaders, which they process and present on their cell surface. The cells then migrate to the spleen or the lymph nodes, where they prime T cells to mount an attack against cells that are cancerous or infected, targeting the specific antigens that are ingested and presented.

Despite their critical role in the immune system, dendritic cells have drawbacks when used for cell-based vaccines: They have a short lifespan, they do not divide when activated, and they are relatively sparse in the bloodstream.

B cells are also antigen-presenting cells, but in contrast to dendritic cells, they can proliferate when activated and are abundant in the bloodstream. However, their functionality is more limited: Whereas dendritic cells constantly sample antigens they encounter, a B cell is genetically programmed only to bind to a specific antigen that matches the receptor on its surface. As such, a B cell generally will not ingest and display an antigen if it does not match its receptor.

Using a microfluidic device, MIT researchers were able to overcome this genetically programmed barrier to antigen uptake — by squeezing the B cells.

Through “CellSqueeze,” the device platform originally developed at MIT, the researchers pass a suspension of B cells and target antigen through tiny, parallel channels etched on a chip. A positive-pressure system moves the suspension through these channels, which gradually narrow, applying a gentle pressure to the B cells. This “squeeze” opens small, temporary holes in their membranes, allowing the target antigen to enter by diffusion.

This process effectively loads the cells with antigens to prime a response of CD8 — or “killer” — T cells, which can then kill cancer cells or other target cells.

The researchers studied the squeezed B cells in culture and found that they could expand antigen-specific T cells at least as well as existing methods using antibody-coated beads. As proof of concept, the researchers then transferred squeezed B cells and antigen-specific T cells into mice, observing that the squeezed B cells could expand T cells in the spleen and in lymph nodes.

The researchers also say that this is the first method that decouples antigen delivery from B-cell activation. A B cell becomes activated when ingesting its antigen or when encountering a foreign stimulus that forces it to ingest nearby antigen. This activation causes B cells to carry out very specific functions, which has limited options for B-cell-based vaccine programming. Using CellSqueeze circumvents this problem, and by being able to separately configure delivery and activation, researchers have greater control over vaccine design.

Gail Bishop, a professor of microbiology at the University of Iowa Carver School of Medicine and director of the school’s Center for Immunology and Immune-Based Diseases, says that this paper presents a “creative new approach with considerable potential in the development of antigen-presenting cell vaccines.”

“The antigen-presenting capabilities of B cells have often been underestimated, but they are being increasingly appreciated for their practical advantages in therapies,” says Bishop, who was not involved in this research. “This new technical approach permits loading B cells effectively with virtually any antigen and has the additional benefit of targeting the antigens to the CD8 T-cell presentation pathway, thus facilitating the activation of the killer T cells desired in many clinical applications.”


Main squeeze

Armon Sharei, now a visiting scientist at the Koch Institute, developed CellSqueeze while he was a graduate student in the laboratories of Klavs Jensen, the Warren K. Lewis Professor of Chemical Engineering and a professor of materials science and engineering, and Robert Langer, the David H. Koch Institute Professor and a member of the Koch Institute. Sharei, Jensen, and Langer are also authors of this paper.

In a separate study published last month in the journal PLoS ONE, Sharei and his colleagues first demonstrated that CellSqueeze can deliver functional macromolecules into immune cells. The platform has benefits over existing delivery methods, including electroporation and genetically engineered viruses, which are limited to delivering nucleic acids. While nucleic acids can code a cell for a target antigen, these indirect methods have drawbacks: They have limited ability in coding for difficult-to-identify antigens, and using nucleic acids bears a risk for accidental genome editing. These methods are also toxic, and can cause cell damage and death. By delivering proteins directly into cells with minimal toxicity, CellSqueeze avoids these shortcomings and, in this new study, demonstrates promise as a versatile platform for creating more effective cell-based vaccines.

“Our dream is to spawn out a whole class of therapies which involve taking out your own cells, telling them what to do, and putting them back into your body to fight your disease, whatever that may be,” Sharei says.

After developing CellSqueeze at MIT, Sharei co-founded SQZ Biotech in 2013 to further develop and commercialize the platform. Just as the company has grown since then — now up to 13 employees — the device has also evolved. Sharei, now the company’s CEO, says that by improving the design and increasing the number of channels, the current generation has a throughput of 1 million cells per second.


Future steps

The researchers say they now plan to refine their B-cell-based vaccine to optimize distribution and function of the immune cells in the body. A B-cell-based approach could also reduce the amount of patient blood required to prepare a vaccine. At present, patients receiving cell-based vaccines must have blood drawn over several hours each time a new dose must be prepared.

Meanwhile, SQZ Biotech aims to reduce the footprint of its device, which could potentially lower the time and cost required to engineer cell-based vaccines.

“We envision a future system, if we can take advantage of its microfluidic nature, as a bedside or field-deployable device,” Sharei says. “Instead of shipping your cells off to this big, centralized facility, you could do it in your hospital or your doctor’s office.”

As the biology and technology become further refined, the authors say that their approach could potentially be a more efficient, more effective, and less expensive method for developing cell-based therapies for patients.

“Down the road, you could potentially get enough cells from just a normal syringe-based blood draw, run it through a bedside device that has the antigen you want to vaccinate against, and then you’d have the vaccine,” Szeto says.

This research was funded by the Kathy and Curt Marble Cancer Research Fund through the Koch Institute Frontier Research Program, the National Cancer Institute, the National Institute of General Medicine Sciences, and the Howard Hughes Medical Institute.


By Kevin Leonardi [en línea] Cambridge, MA (USA):, 04 de junio de 2015 [ref. 22 de mayo de 2015] Disponible en Internet:

VolBrain: Nuevo Sistema para la Investigación Neurológica

1 06 2015

La UPV y el CNRS desarrollan volBrain, un nuevo sistema online gratuito clave para la investigación de patologías neurológicas

 Un equipo de investigadores del Instituto de Aplicaciones de las Tecnologías de la Información y las Comunicaciones Avanzadas de la Universitat Politècnica de València (ITACA-UPV) y el Centro Nacional para la Investigación Científica de Francia (CNRS) han desarrollado volBrain, una nueva plataforma online gratuita que permite un análisis automático, rápido y detallado de imágenes de resonancia magnética del cerebro, facilitando de este modo a los científicos información clave para el avance en la investigación sobre patologías neurológicas.

De hecho, en los tres meses que lleva en funcionamiento, volBrain ha procesado ya más de 1.500 casos procedentes de más de 70 universidades, centros de investigación, clínicas y hospitales de los cinco continentes. Hoy se procesan alrededor de 30 casos al día, si bien el sistema tiene capacidad para procesar hasta 500 cada 24 horas.


Información sobre volúmenes e índices de asimetría de las estructuras subcorticales

volBrain ofrece información sobre los volúmenes de los tejidos de la cavidad intracraneal (ICC) -CSF, GM y WM)-, así como de algunas áreas macroscópicas como los hemisferios cerebrales, el cerebelo y el tronco cerebral. A su vez, proporciona los volúmenes e índices de asimetría de las estructuras subcorticales, de gran importancia en el ámbito neurológico.

Para ello, incorpora un conjunto de herramientas informáticas desarrolladas por los investigadores de la UPV y el CNRS que permiten el análisis exhaustivo y preciso de la volumetría cerebral, comparando cada nuevo caso que llega al sistema con una base de datos de 50 cerebros etiquetados manualmente.


Eficaz en el diagnóstico de enfermedades como el Alzheimer

José Vicente Manjón, investigador del ITACA-UPV, explica que “volBrain puede medir estructuras como el hipocampo o la amígdala, muy importantes en el desarrollo de una enfermedad como el Alzheimer. Uno de los efectos de esta patología es la reducción del volumen del hipocampo, que puede ser medido de forma automática y precisa en nuestro sistema”.

“volBrain proporciona información muy importante para medir atrofias cerebrales, hecho que podría ayudar en el diagnóstico y seguimiento de enfermedades neurológicas donde aparecen alteraciones morfológicas, como por ejemplo el Alzheimer”, apunta Manjón.


Reduce a apenas 15 minutos un proceso que hasta la fecha costaba 15 horas

Entre sus principales ventajas, volBrain destaca fundamentalmente por su facilidad de uso y la velocidad de análisis, que lo diferencia de otros sistemas similares que existen en el mercado. “El usuario no necesita instalar ningún software. Solo tiene que enviar un fichero comprimido a través de la web. La información llega a nuestro cluster local y, en unos 15 minutos, el sistema le envía un informe detallado con los resultados de la segmentación y procesado de los volúmenes cerebrales por correo electrónico. Los sistemas similares actuales tardan 15 horas en ofrecer esta información”, explica Manjón.

“Utilizamos las similitudes de patrones cerebrales para etiquetar y medir los volúmenes de cada nuevo caso. Además, si se incluyen los datos de edad y sexo del sujeto, el sistema permite comprobar si el caso analizado está dentro o no de los parámetros de normalidad asociados a esas variables”, concluye el científico del ITACA-UPV.

VolBrain, además, envía en el informe una captura de pantalla del proceso de medida para que el usuario pueda visualizar la segmentación de las estructuras cerebrales.


Su presentación internacional, en junio

Los investigadores de la UPV y el CNRS presentarán volBrain en la conferencia internacional Human Brain Mapping, el encuentro más importante del mundo sobre neuroimagen, que tendrá lugar el próximo mes de junio en Honolulu.


Más información

volBrain, un nuevo sistema para la investigación neurológica [en línea] Valencia (ESP): 01 de junio de 2015 [ref. 25 de mayo de 2015] Disponible en Internet:

Controlling a Robotic Arm with a Patient’s Intentions

28 05 2015

Neural prosthetic devices implanted in the brain’s movement center, the motor cortex, can allow patients with amputations or paralysis to control the movement of a robotic limb—one that can be either connected to or separate from the patient’s own limb. However, current neuroprosthetics produce motion that is delayed and jerky—not the smooth and seemingly automatic gestures associated with natural movement. Now, by implanting neuroprosthetics in a part of the brain that controls not the movement directly but rather our intent to move, Caltech researchers have developed a way to produce more natural and fluid motions.

Example of an fMRI scan used for targeting the device implantation location.

In a clinical trial, the Caltech team and colleagues from Keck Medicine of USC have successfully implanted just such a device in a patient with quadriplegia, giving him the ability to perform a fluid hand-shaking gesture and even play “rock, paper, scissors” using a separate robotic arm.

The results of the trial, led by principal investigator Richard Andersen, the James G. Boswell Professor of Neuroscience, and including Caltech lab members Tyson Aflalo, Spencer Kellis, Christian Klaes, Brian Lee, Ying Shi and Kelsie Pejsa, are published in the May 22 edition of the journal Science.

“When you move your arm, you really don’t think about which muscles to activate and the details of the movement—such as lift the arm, extend the arm, grasp the cup, close the hand around the cup, and so on. Instead, you think about the goal of the movement. For example, ‘I want to pick up that cup of water,’” Andersen says. “So in this trial, we were successfully able to decode these actual intents, by asking the subject to simply imagine the movement as a whole, rather than breaking it down into myriad components.”

For example, the process of seeing a person and then shaking his hand begins with a visual signal (for example, recognizing someone you know) that is first processed in the lower visual areas of the cerebral cortex. The signal then moves up to a high-level cognitive area known as the posterior parietal cortex (PPC). Here, the initial intent to make a movement is formed. These intentions are then transmitted to the motor cortex, through the spinal cord, and on to the arms and legs where the movement is executed.

High spinal cord injuries can cause quadriplegia in some patients because movement signals cannot get from the brain to the arms and legs. As a solution, earlier neuroprosthetic implants used tiny electrodes to detect and record movement signals at their last stop before reaching the spinal cord: the motor cortex.

The recorded signal is then carried via wire bundles from the patient’s brain to a computer, where it is translated into an instruction for a robotic limb. However, because the motor cortex normally controls many muscles, the signals tend to be detailed and specific. The Caltech group wanted to see if the simpler intent to shake the hand could be used to control the prosthetic limb, instead of asking the subject to concentrate on each component of the handshake—a more painstaking and less natural approach.

Andersen and his colleagues wanted to improve the versatility of movement that a neuroprosthetic can offer by recording signals from a different brain region—the PPC. “The PPC is earlier in the pathway, so signals there are more related to movement planning—what you actually intend to do—rather than the details of the movement execution,” he says. “We hoped that the signals from the PPC would be easier for the patients to use, ultimately making the movement process more intuitive. Our future studies will investigate ways to combine the detailed motor cortex signals with more cognitive PPC signals to take advantage of each area’s specializations.”

In the clinical trial, designed to test the safety and effectiveness of this new approach, the Caltech team collaborated with surgeons at Keck Medicine of USC and the rehabilitation team at Rancho Los Amigos National Rehabilitation Center. The surgeons implanted a pair of small electrode arrays in two parts of the PPC of a quadriplegic patient. Each array contains 96 active electrodes that, in turn, each record the activity of a single neuron in the PPC. The arrays were connected by a cable to a system of computers that processed the signals, decoded the intent of the subject, and controlled output devices that included a computer cursor and a robotic arm developed by collaborators at Johns Hopkins University.

Imagen de previsualización de YouTube

After recovering from the surgery, the patient was trained to control the computer cursor and the robotic arm with his mind. Once training was complete, the researchers saw just what they were hoping for: intuitive movement of the robotic arm.

“For me, the most exciting moment of the trial was when the participant first moved the robotic limb with his thoughts. He had been paralyzed for over 10 years, and this was the first time since his injury that he could move a limb and reach out to someone. It was a thrilling moment for all of us,” Andersen says.

“It was a big surprise that the patient was able to control the limb on day one—the very first day he tried,” he adds. “This attests to how intuitive the control is when using PPC activity.”

The patient, Erik G. Sorto, was also thrilled with the quick results: “I was surprised at how easy it was,” he says. “I remember just having this out-of-body experience, and I wanted to just run around and high-five everybody.”

Over time, Sorto continued to refine his control of his robotic arm, thus providing the researchers with more information about how the PPC works. For example, “we learned that if he thought, ‘I should move my hand over toward to the object in a certain way’—trying to control the limb—that didn’t work,” Andersen says. “The thought actually needed to be more cognitive. But if he just thought, ‘I want to grasp the object,’ it was much easier. And that is exactly what we would expect from this area of the brain.”

This better understanding of the PPC will help the researchers improve neuroprosthetic devices of the future, Andersen says. “What we have here is a unique window into the workings of a complex high-level brain area as we work collaboratively with our subject to perfect his skill in controlling external devices.”

“The primary mission of the USC Neurorestoration Center is to take advantage of resources from our clinical programs to create unique opportunities to translate scientific discoveries, such as those of the Andersen Lab at Caltech, to human patients, ultimately turning transformative discoveries into effective therapies,” says center director Charles Y. Liu, professor of neurological surgery, neurology, and biomedical engineering at USC, who led the surgical implant procedure and the USC/Rancho Los Amigos team in the collaboration.

“In taking care of patients with neurological injuries and diseases—and knowing the significant limitations of current treatment strategies—it is clear that completely new approaches are necessary to restore function to paralyzed patients. Direct brain control of robots and computers has the potential to dramatically change the lives of many people,” Liu adds.

Dr. Mindy Aisen, the chief medical officer at Rancho Los Amigos who led the study’s rehabilitation team, says that advancements in prosthetics like these hold promise for the future of patient rehabilitation. “We at Rancho are dedicated to advancing rehabilitation through new assistive technologies, such as robotics and brain-machine interfaces. We have created a unique environment that can seamlessly bring together rehabilitation, medicine, and science as exemplified in this study,” she says.

Although tasks like shaking hands and playing “rock, paper, scissors” are important to demonstrate the capability of these devices, the hope is that neuroprosthetics will eventually enable patients to perform more practical tasks that will allow them to regain some of their independence.

“This study has been very meaningful to me. As much as the project needed me, I needed the project. The project has made a huge difference in my life. It gives me great pleasure to be part of the solution for improving paralyzed patients’ lives,” Sorto says. ”I joke around with the guys that I want to be able to drink my own beer—to be able to take a drink at my own pace, when I want to take a sip out of my beer and to not have to ask somebody to give it to me. I really miss that independence. I think that if it was safe enough, I would really enjoy grooming myself—shaving, brushing my own teeth. That would be fantastic.”

To that end, Andersen and his colleagues are already working on a strategy that could enable patients to perform these finer motor skills. The key is to be able to provide particular types of sensory feedback from the robotic arm to the brain.

Although Sorto’s implant allowed him to control larger movements with visual feedback, “to really do fine dexterous control, you also need feedback from touch,” Andersen says. “Without it, it’s like going to the dentist and having your mouth numbed. It’s very hard to speak without somatosensory feedback.” The newest devices under development by Andersen and his colleagues feature a mechanism to relay signals from the robotic arm back into the part of the brain that gives the perception of touch.

“The reason we are developing these devices is that normally a quadriplegic patient couldn’t, say, pick up a glass of water to sip it, or feed themselves. They can’t even do anything if their nose itches. Seemingly trivial things like this are very frustrating for the patients,” Andersen says. “This trial is an important step toward improving their quality of life.”

The results of the trial were published in a paper titled, “Decoding Motor Imagery from the Posterior Parietal Cortex of a Tetraplegic Human.” The implanted device and signal processors used in the Caltech-led clinical trial were the NeuroPort Array and NeuroPort Bio-potential Signal Processors developed by Blackrock Microsystems in Salt Lake City, Utah. The robotic arm used in the trial was the Modular Prosthetic Limb, developed at the Applied Physics Laboratory at Johns Hopkins. Sorto was recruited to the trial by collaborators at Rancho Los Amigos National Rehabilitation Center and at Keck Medicine of USC. This trial was funded by National Institutes of Health, the Boswell Foundation, the Department of Defense, and the USC Neurorestoration Center.

Written by Jessica Stoller-Conrad


Deborah Williams-Hedges

(626) 395-3227 [en línea] Pasadena, CA (USA): 28 de mayo de 2015 [ref. 21 de mayo de 2015] Disponible en Internet:

Discovery paves way for homebrewed drugs, prompts call for regulation

25 05 2015

Fans of homebrewed beer and backyard distilleries already know how to employ yeast to convert sugar into alcohol. But a research team led by UC Berkeley bioengineers has gone much further by completing key steps needed to turn sugar-fed yeast into a microbial factory for producing morphine and potentially other drugs, including antibiotics and anti-cancer therapeutics.


New research may soon make growing fields of opium poppy unnecessary when it comes to the production of opiates and potentially other drugs, such as antibiotics. A team led by UC Berkeley bioengineers has completed key steps that will enable yeast to convert sugar into pharmaceuticals.

Over the past decade, a handful of synthetic-biology labs have been working on replicating in microbes a complex, 15-step chemical pathway in the poppy plant to enable production of therapeutic drugs. Research teams have independently recreated different sections of the poppy’s drug pathway using E. coli or yeast, but what had been missing until now were the final steps that would allow a single organism to perform the task from start to finish.

In a new study appearing today (Monday, May 18) in the advanced online publication of the journal Nature Chemical Biology, UC Berkeley bioengineer John Dueber teamed up with microbiologist Vincent Martin at Concordia University in Montreal, to overcome that hurdle by replicating the early steps in the pathway in an engineered strain of yeast. They were able to synthesize reticuline, a compound in poppy, from tyrosine, a derivative of glucose.

“What you really want to do from a fermentation perspective is to be able to feed the yeast glucose, which is a cheap sugar source, and have the yeast do all the chemical steps required downstream to make your target therapeutic drug,” said Dueber, the study’s principal investigator and an assistant professor of bioengineering. “With our study, all the steps have been described, and it’s now a matter of linking them together and scaling up the process. It’s not a trivial challenge, but it’s doable.”


Paving the path from plants to microbes

The qualities that make the poppy plant pathway so challenging are the same ones that make it such an attractive target for research. It is complex, but it is the foundation upon which researchers can build new therapeutics. Benzylisoquinoline alkaloids, or BIAs, are the class of highly bioactive compounds found in the poppy, and that family includes some 2,500 molecules isolated from plants.


On the right are yeast cells producing the yellow beet pigment betaxanthin, which UC Berkeley researchers used to quickly identify key enzymes in the production of benzylisoquinoline alkaloids (BIAs), the metabolites in the poppy plant that could lead to morphine, antibiotics and other pharmaceuticals. (Photo by William DeLoache)

Perhaps the best-known trail in the BIA pathway is the one that leads to the opiates, such as codeine, morphine and thebaine, a precursor to oxycodone and hydrocodone. All are controlled substances. But different trails will lead to the antispasmodic papaverine or to the antibiotic precursor dihydrosanguinarine.

“Plants have slow growth cycles, so it’s hard to fully explore all the possible chemicals that can be made from the BIA pathway by genetically engineering the poppy,” said study lead author William DeLoache, a UC Berkeley Ph.D. student in bioengineering. “Moving the BIA pathway to microbes dramatically reduces the cost of drug discovery. We can easily manipulate and tune the DNA of the yeast and quickly test the results.”

The researchers found that by repurposing an enzyme from beets that is naturally used in the production of their vibrant pigments, they could coax yeast to convert tyrosine, an amino acid readily derived from glucose, into dopamine.

With help from the lab of Concordia University’s Vincent Martin, the researchers were able to reconstitute the full seven-enzyme pathway from tyrosine to reticuline in yeast.

“Getting to reticuline is critical because from there, the molecular steps that produce codeine and morphine from reticuline have already been described in yeast,” said Martin, a professor of microbial genomics and engineering. “Also, reticuline is a molecular hub in the BIA pathway. From there, we can explore many different paths to other potential drugs, not just opiates.”


Red flag for regulators

The study authors noted that the discovery dramatically speeds up the clock for when homebrewing drugs could become a reality, and they are calling for regulators and law enforcement officials to pay attention.

“We’re likely looking at a timeline of a couple of years, not a decade or more, when sugar-fed yeast could reliably produce a controlled substance,” said Dueber. “The time is now to think about policies to address this area of research. The field is moving surprisingly fast, and we need to be out in front so that we can mitigate the potential for abuse.”

In a commentary to be published in Nature and timed with the publication of this study, policy analysts call for urgent regulation of this new technology. They highlight the many benefits of this work, but they also point out that “individuals with access to the yeast strain and basic skills in fermentation would be able to grow the yeast using the equivalent of a homebrew kit.”

They recommend restricting engineered yeast strains to licensed facilities and to authorized researchers, noting that it would be difficult to detect and control the illicit transport of such strains.

While such controls may help, Dueber said, “An additional concern is that once the knowledge of how to create an opiate-producing strain is out there, anyone trained in basic molecular biology could theoretically build it.”

Another target for regulation would be the companies that synthesize and sell DNA sequences. “Restrictions are already in place for sequences tied to pathogenic organisms, like smallpox,” said DeLoache. “But maybe it’s time we also look at sequences for producing controlled substances.”

Other co-authors on this study are Zachary Russ and Andrew Gonzales of UC Berkeley’s Department of Bioengineering, and Lauren Narcross of Concordia University’s Department of Biology.


By Sarah Yang [en línea] Berkeley, CA (USA):, 25 de mayo de 2015 [ref. 18 de mayo de 2015] Disponible en Internet:

One simple medical test for all infections

21 05 2015

University of Toronto researcher uses new technology to fast-track diagnoses and provide targeted treatment


The technology will be ready for clinicians to use for routine testing in about a year, says Samir Patel (photo by Gerda via Flickr)

If you’re returning from abroad with a fever, your doctor will likely test you for malaria. You’ll give multiple blood samples at the lab, and if the results are inconclusive, you’ll face yet another round of tests.

But researchers from the University of Toronto are fast-tracking this process with new technology. With one sample, they can quickly and accurately diagnose a patient and recommend targeted treatment against any bacteria or virus.

“With this new technology we can streamline ordering 30 different tests. We can just order the one test and identify the pathogen – whether it’s dengue fever, West Nile virus, Chikungunya virus, or a new bacteria or virus,” said Samir Patel, a professor at U of T’s department of laboratory medicine and pathobiology.

Using what is called Next Generation Sequencing, Patel takes a patient’s sample and analyzes its genetic code. His team then matches the code to a database of thousands of bacteria and viruses, interprets the complex data and provides a diagnosis.


“Our current tests can be expensive, time consuming and aren’t always accurate,” said Patel (pictured at right). “Next Generation Sequencing will revolutionize the microbiology field. With the information it provides we can fine-tune patient treatment.”

This technology also removes the need for lengthy guesswork. For example, if an Ontario patient has a fever and a severe headache during the summer, doctors would normally test for West Nile virus. But those test results are frequently negative. Instead of speculating, doctors can now let high-powered computers discover what’s in the sample.

“Dr. Patel’s work in pathogen discovery aims to deliver a one-stop-shop that can definitely determine the causative organisms in severe infections such as meningitis and encephalitis,” said Vanessa Allen, chief of medical microbiology at Public Health Ontario. “This has the potential to revolutionize the way we deliver microbiology diagnostics for improved patient care.”


Patel, a clinical microbiologist, began using this technology for the Pathogen Discovery Program at Public Health Ontario in 2012. The goal of the program is to diagnose difficult cases and to quickly and accurately identify bacteria and viruses that could cause an outbreak.

During an outbreak, Patel could also track where the bugs come from and how they are evolving.  Others have used Next Generation Sequencing to identify and track specific strains of Ebola in West Africa.

“Should any outbreak occur in Ontario, we could test samples, identify the bacteria or virus that is causing the outbreak and track the spread using a systematic process,” said Patel. “We can also see how infectious a virus or bacteria is, and if similar strains are circulating through other parts of the world.”

Patel predicts that the technology will be ready for clinicians to use for routine testing in about a year.

“The program will help diagnose patients who have inconclusive routine test results, and will also enhance the public health response to an outbreak in Ontario. A lot of times we’re in a reactive mode, but this is an area where we’re getting ahead of the game.”


By Katie Babcock [en línea] Toronto (CAN):, 21 de mayo de 2015 [ref. 22 de abril de 2015] Disponible en Internet:

How blood group O protects against malaria

18 05 2015

It has long been known that people with blood type O are protected from dying of severe malaria. In a study published in Nature Medicine, a team of Scandinavian scientists explains the mechanisms behind the protection that blood type O provides, and suggest that the selective pressure imposed by malaria may contribute to the variable global distribution of ABO blood groups in the human population.

Anopheles albimanus mosquito. Credit: James Gathany (Wikimedia Commons).

Malaria is a serious disease that is estimated by the WHO to infect 200 million people a year, 600,000 of whom, primarily children under five, fatally. Malaria, which is most endemic in sub-Saharan Africa, is caused by different kinds of parasites from the plasmodium family, and effectively all cases of severe or fatal malaria come from the species known as Plasmodium falciparum. In severe cases of the disease, the infected red blood cells adhere excessively in the microvasculature and block the blood flow, causing oxygen deficiency and tissue damage that can lead to coma, brain damage and, eventually death. Scientists have therefore been keen to learn more about how this species of parasite makes the infected red blood cells so sticky.

It has long been known that people with blood type O are protected against severe malaria, while those with other types, such as A, often fall into a coma and die. Unpacking the mechanisms behind this has been one of the main goals of malaria research.

A team of scientists led from Karolinska Institutet in Sweden have now identified a new and important piece of the puzzle by describing the key part played by the RIFIN protein. Using data from different kinds of experiment on cell cultures and animals, they show how the Plasmodium falciparum parasite secretes RIFIN, and how the protein makes its way to the surface of the blood cell, where it acts like glue. The team also demonstrates how it bonds strongly with the surface of type A blood cells, but only weakly to type O.


Conceptually simple

Principal investigator Mats Wahlgren, a Professor at Karolinska Institutet’s Department of Microbiology, Tumour and Cell Biology, describes the finding as “conceptually simple”. However, since RIFIN is found in many different variants, it has taken the research team a lot of time to isolate exactly which variant is responsible for this mechanism.

“Our study ties together previous findings”, said Professor Wahlgren. “We can explain the mechanism behind the protection that blood group O provides against severe malaria, which can, in turn, explain why the blood type is so common in the areas where malaria is common. In Nigeria, for instance, more than half of the population belongs to blood group O, which protects against malaria.”

The study was financed by grants from the Swedish Foundation for Strategic Research, the EU, the Swedish Research Council, the Torsten and Ragnar Söderberg Foundation, the Royal Swedish Academy of Sciences, and Karolinska Institutet. Except Karolinska Institutet, co-authors of the study are affiliated to Stockholm University, Lund University, Karolinska University Hospital, and the national research facility SciLifeLab in Sweden, and to the University of Copenhagen in Denmark and University of Helsinki in Finland. Mats Wahlgren is a shareholder and board member of drug company Dilaforette AB, which is working on an anti-malaria drug. The company was founded with support from Karolinska Development AB, which helps innovators with patent-protected discoveries reach the commercial market.



RIFINs are Adhesins Implicated in Severe Plasmodium falciparum Malaria

Suchi Goel, Mia Palmkvist, Kirsten Moll, Nicolas Joannin, Patricia Lara, Reetesh Akhouri, Nasim Moradi, Karin Öjemalm, Mattias Westman, Davide Angeletti, Hanna Kjellin, Janne Lehtiö, Ola Blixt, Lars Ideström, Carl G Gahmberg, Jill R Storry, Annika K. Hult, Martin L. Olsson, Gunnar von Heijne, IngMarie Nilsson and Mats Wahlgren

Nature Medicine, AOP 9 March 2015, doi: 10.1038/nm.3812
 [en línea] Solna (SUE):, 18 de mayo de 2015 [ref. 10 de marzo de 2015] Disponible en Internet:


14 05 2015

Los reciente descubrimientos acerca de cómo funciona el cerebro están arrojando luz sobre los procesos de aprendizaje. Entender mejor cómo adquirimos nuevos conocimientos puede ayudarnos a mejorar las escuelas y el sistema educativo. Científicos y maestros comienzan a ir de la mano.

 Si pudiéramos colarnos de puntillas en una clase de literatura de una escuela finlandesa, tal vez pensaríamos que los niños están en el recreo o haciendo una pausa. Porque no nos encontraríamos al profesor en la tarima explicando la obra de, pongamos por caso Shakespeare, y a los chicos tomando apuntes y escuchando. Nada eso. Muy probablemente, veríamos a los alumnos repartidos en pequeños grupos elaborando listas de música que funcionen de banda sonora para expresar los sentimientos de los personajes de Hamlet. O de Romeo y Julieta.

Es sólo un ejemplo real de algo que la ciencia ahora ha demostrado y que muchos profesores y educadores ya comenzaron a intuir hace tiempo: que no aprendemos a base de memorizar conceptos, repitiendo y repitiendo, sino de hacer, de experimentar y, sobre todo, de emocionarnos. Y que si aprendemos en grupo, esos conocimientos perduran con mayor intensidad en la memoria.

Hasta hace apenas 30 años, se desconocía en gran medida cómo funcionaba el cerebro. No obstante, los desarrollos y avances tecnológicos en áreas como la medicina y, sobre todo, las neurociencias nos han permitido escudriñar las neuronas, sus relaciones, y entender un poco más la actividad cerebral.


“Eso ha abierto una nueva etapa para poder conocernos mejor a nosotros mismos, para entender mejor cómo funcionamos y aplicar ese conocimiento a áreas tan diversas como la economía, la cultura y también la educación”, considera David Bueno, profesor de genética de la Universidad de Barcelona, especializado en la formación del cerebro y divulgador científico.

Y es así como en los últimos años hemos comenzado a escuchar nuevos términos, como neuromarketing, neuroeconomía, neuroarquitectura y también, neuroeducación, un movimiento internacional, aún incipiente, de científicos y educadores que pretenden aplicar los descubrimientos sobre el cerebro en la escuela y la universidad para ayudar a aprender y a enseñar mejor.

“Hasta ahora habíamos hablado de la memoria, de la atención, la emoción, pero de forma desperdigada, sin realmente darnos cuenta de cómo los códigos que trae el cerebro para aprender o para memorizar son tan esenciales para la supervivencia como comer o beber”, señala el neurocientífico Francisco Mora, quien ha publicado recientemente “Neuroeducación. Sólo se puede aprender aquello que sea ama”, uno de los primeros manuales dedicados a este tema y que se ha convertido en un fenómeno de superventas.

Conocer esos códigos de funcionamiento del cerebro ha permitido demostrar, por ejemplo, la importancia de la curiosidad y la emoción para poder adquirir nuevos conocimientos; que el deporte es esencial para fijar el aprendizaje y también que el cerebro no es un continuum, sino que hay ventanas de conocimiento que se abren y se cierran en función de las etapas de la vida.

Y si hasta ahora educadores y científicos habían estado aislados, unos en las aulas y los otros en sus laboratorios, ahora comienzan a ir de la mano. Universidades como la John Hopkins, en Estados Unidos, ya han puesto en marcha proyectos de investigación en neuroeducación, como también Harvard, que dispone de un programa llamado Mente, Cerebro y Educación que pretende explorar la intersección de la neurociencia biológica y la enseñanza. Es la era de la Neuroeducación.



¿Recuerdan cuando iban a la escuela y en determinadas asignaturas les hacían aprender decenas de cosas de memoria? Que si fórmulas de física y química, que si la capital de Colombia es Bogotá, que si la Revolución francesa estalló en 1789… Datos y más datos que el tiempo acaba borrando. Y aún más si el profesor que tuvieron fue bien aburrido. En cambio, seguro que recuerdan a algún maestro que consiguió despertar su atención e interés.

Y es que la emoción es el ingrediente secreto del aprendizaje, dice la Neurociencia, fundamental para quien enseña y para quien aprende. “El binomio emoción-cognición es indisoluble, intrínseco al diseño anatómico y funcional del cerebro”, explica Francisco Mora, experto en neurofisiología. Al parecer, la información que nos llega a través de los sentidos pasa por el sistema límbico o cerebro emocional antes de que sea procesada por la corteza cerebral, encargada de los procesos cognitivos. Dentro del sistema límbico, la amígdala juega un papel esencial. Es una de las partes más primitivas del cerebro y se activa ante cosas que considera importantes para la supervivencia, lo que ayuda a consolidar de forma más eficiente un recuerdo.

Las historias, por ejemplo, suelen funcionar como auténticos despertadores de esta región cerebral. David Bueno lo tiene comprobado con sus alumnos universitarios. “Cuando me toca explicarles, por ejemplo, el triángulo de Tartaglia, una fórmula matemática que necesitan para resolver muchos problemas de genética, les suelo contar que en realidad el matemático italiano que lo formuló no se llamaba Tartaglia, sino Niccolo Fontana. Lo que pasa es que era tartamudo, o tartaglia, en italiano. Y al final el apodo que tenía acabó dando nombre a la fórmula. Esa anécdota hace estallar de risa a los estudiantes y lo mejor es que ya no se olvidan de la fórmula”.

La sorpresa es otro factor esencial para activar la amígdala. El cerebro es un órgano al que le gusta procesar patrones, entender cosas que se repiten siempre de la misma forma, es la manera como se enfrenta al mundo que lo rodea. Ahora bien, todo aquello que escapa a esos patrones se guarda de forma más profunda en el cerebro. De ahí que usar elementos en la clase que rompan con la monotonía, con lo esperado, impacte más en el aprendizaje.

En este sentido, Jaime Romano, médico y neurólogo, al frente del proyecto pionero Neuromarketing propone: “En una clase de historia, que el profesor llegue un día disfrazado de Napoleón, por ejemplo, y que los chicos también se disfracen y se diviertan representando algún episodio de la historia. Eso sí que va a quedar profundamente grabado en sus mentes”. Y Romano sabe muy bien de qué habla.

Este neurocientífico mexicano lleva investigando el cerebro desde hace más de 30 años como investigador de UCLA y del Instituto Mexicano de salud mental. También ha atendido a niños y adolescentes con problemas de aprendizaje y desarrollo. Una década atrás echó a andar un laboratorio de neurociencias para tratar de entender mejor el proceso de aprendizaje en los chicos y mejorarlo.

Para ello, “diseñé un modelo que se conoce como neuropirámide, que cuenta con seis peldaños. En cada uno de ello se plantea qué sucede con la información cuando va entrando por los órganos de los sentidos, cómo se procesa en el cerebro hasta que se convierte en aprendizaje. Y hemos visto que tiene que ver con procesos de poner atención, emocionales”, explica Romano.

Ahora, este médico mexicano está poniendo en marcha un proyecto que confiesa que es todo un sueño para él. De la mano de desarrolladores, está diseñando videojuegos lúdicos, muy atractivos para los niños, pero que impacten en todos y cada uno de los peldaños de la neuropirámide. “Habrá juegos que refuercen, por ejemplo, el proceso de atención de los chicos; otros, el proceso de análisis y síntesis”, explica Romano. Así, la idea es crear una plataforma con videojuegos orientados a distintas edades para que los niños al llegar a casa del cole se pongan a jugar y a la vez que la pasan bien, desarrollen sus actividades mentales.

“Queremos mejorar la capacidad emocional y mental de los chavales, los procesos de cálculo, de comprensión, y eso repercutirá en que aprenderán mejor las matemáticas, a leer y a entender mejor los textos, a fijar su atención” explica Romano ilusionado. Y destaca la importancia que tiene el juego, la parte lúdica, divertida, vivencial en el aprendizaje. El juego es una puerta hacia el aprendizaje y las nuevas tecnologías son un gran aliado, puesto que captan muy rápidamente la atención de los niños.


Mueve tus neuronas

En Antigüedad ya intuían la relación entre ejercicio y bienestar físico y mental, Mente Sana in Corpore Sano. Y en los últimos años, la ciencia ha demostrado esta relación. Al parecer, cada vez que practicamos deporte cardiovascular, al contraer y estirar los músculos estos segregan una proteína que viaja al cerebro y allí fomenta la plasticidad cerebral, que se creen nuevas neuronas, nuevas conexiones entre ellas o sinapsis, y justamente en los centros de memoria.

“A veces cuando un alumno va mal en la escuela –señala el profesor universitario David Bueno- lo quitan del deporte, para que así pueda estudiar más. Pero es un error, porque lo que estamos haciendo es sustraerle la cualidad que le permite memorizar aquello que estudia. Muchas veces no es una cuestión de cantidad de horas, sino de calidad de horas”.

También se ha visto que el deporte activa la secreción de unas moléculas llamadas endorfinas y que son opiáceas, capaces de generar sensación de bienestar, de placer, optimismo, e íntimamente relacionadas con la concentración y la atención.


Aprovechando las ventanas

Una de la cosas más interesantes y nuevas que defiende la neuroeducación son las “ventanas”. Al contrario de lo que mucho tiempo se creyó, el cerebro no es estático y va aprendiendo cosas sin más una detrás de otra, sino que “existen ventanas plásticas, períodos críticos en los que un aprendizaje se ve más favorecido que otro”, señala Francisco Mora, autor de “Neuroeducación”.

Así, por ejemplo, para aprender a hablar la ventana se abre al nacer y se cierra a los siete años, aproximadamente. Eso no quiere decir que pasada esa edad el niño no pueda adquirir el lenguaje, porque gracias a la enorme plasticidad del cerebro, lo conseguiría aunque le costaría mucho más y, asegura Mora, nunca tendría un dominio de la lengua como otro niño que haya aprendido a hablar de los 0 a los 3 años.

El descubrir que existen períodos de aprendizaje concretos hace que las escuelas deban también replantearse el modelo educativo. Para David Bueno, experto en formación del cerebro, “hasta los 10 o 12 años, el cerebro tiene una ventana específica para aprender aptitudes, para manejar información, para razonar. Tal vez esa etapa sea el momento de potenciar la comprensión de un texto; que sean capaces de entender y extraer información; que aprendan a razonar de forma matemática, en lugar de memorizar mucho contenido. En definitiva, trabajar aquellas habilidades que después conformarán un cerebro con ganas de aprender cosas nuevas”.

El sistema educativo actual en algunos casos choca contra esas ventanas cerebrales. Por ejemplo, cuando los niños son muy pequeños, tenerlos sentados en una clase, quietos, “sabemos que impacta negativamente en su cerebro”, alerta Jaime Romano, al frente de Neuromarketing. Porque para poder madurar, crear nuevas redes de neuronas, el cerebro necesita experiencias nuevas. “Imagínate niños chiquitos expuestos cada día a las mismas cosas… Acaban haciendo menos redes neuronales y su cerebro está menos desarrollado”, añade.

Desde la neuroeducación se aconseja que en los primeros años de vida se esté en contacto con la naturaleza, una fuente inagotable de estímulos, porque es a esas edades, señalan, cuando se construyen los perceptos, las formas, los colores, el movimiento, la profundidad, con los que luego se tejerán los conceptos. “Para construir buenas ideas hay que tener buenos perceptos. Son los átomos del conocimiento, de pensamiento”, recalca Francisco Mora, que añade “no podemos entender la educación adecuadamente si no tenemos en cuenta cómo funciona el cerebro. La neuroeducación es mirar la evolución biológica y aprender de ella para aplicarla a nuestros procesos educativos. Durante los dos primeros años de vida, lo sensorial es básico para la construcción de futuros conceptos. Los abstractos, que son la construcción de las ideas, vienen después, cuando el mundo perceptivo ha sido rico. ”.


¡Ay, la adolescencia…!

Una de las cosas de la escuela actual que está totalmente en contra de los códigos del cerebro es la forma en que se intenta enseñar a los adolescentes. A esta edad empiezan a tener materias como biología, química, física, que deben aprender de forma totalmente racional. El problema es que a esa edad el cerebro es plenamente emocional. “Desde un punto de vista evolutivo tiene sentido porque en esta época de la vida los chicos buscan sus propios límites e intentan superarlos. Forma parte de una estrategia de supervivencia de la propia especie”, explica Bueno.

Así pues, tenemos cerebros desregulados de manera natural emocionalmente a los que intentamos enseñar cosas de manera racional. “Por eso muchos chavales en esta etapa dicen que no quieren hacer ciencias y se pierden muchas vocaciones científicas y sobre todo en el caso de las chicas”, añade este investigador en genética.

Pero, ¿cómo solucionarlo? Pues… introduciendo emoción. En lugar de hablarles sólo de fórmulas y teoremas, tratar de acercar la ciencia a sus vidas, enganchar a su cerebro social. ¿Y si el profesor de matemáticas no explicara directamente el teorema de Pitágoras, sino que contara su vida, sus aventuras y desventuras, para comprender qué llevó a este filósofo y matemático griego a enunciar este principio?

También habría que tener en cuenta los horarios. Al entrar en la adolescencia, el cerebro de forma automática retrasa la hora de ir a dormir y también de despertarse por la mañana. En cambio, en esa etapa muchos centros educativos avanzan la hora de entrada de los chicos. “Se deberían adaptar los ritmos escolares a los biológicos”, destaca Bueno. Tampoco es necesario que estén tantas horas en clase. De hacerse más vivenciales, afirman los expertos en neuroeducación, en menos tiempo se impartiría más conocimiento.


Cambiar el colegio

“El sistema educativo actual es totalmente anacrónico. Los niños se aburren. Enseñamos de la misma manera desde hace 200 años. ¡No tiene ningún sentido”, exclama Mark Prensky, experto en educación e inventor del concepto ‘nativos digitales’. Para Sir Ken Robinson, otro de los grandes gurús en educación, la escuela actual se diseñó durante la revolución industrial, cuando hacía falta tener trabajadores preparados para repetir lo mismo una y otra vez. El colegio seguía ese mismo patrón: niños que aprendían de memoria determinados conocimientos y que los repetían como loros.

Pero el mundo, afortunadamente ha cambiado. Nuestra sociedad ya no se basa en la producción masiva de objetos, sino cada vez más en la de ideas, en la creatividad y surgen nuevas profesiones que se adaptan a esta nueva época en que vivimos. “Necesitamos maestros que preparen a los niños para afrontar esos nuevos retos. Ellos son capaces de transformar el cerebro, tanto física como químicamente, de los alumnos, de la misma manera que un escultor con su cincel es capaz a partir de un mármol amorfo crear una figura tan bella como el David”, afirma el neurocientífico Francisco Mora.

Los docentes, reclama la Neuroeducación, deberían comenzar a aprovechar todo lo que se conoce del funcionamiento del cerebro humano para enseñar mejor. Y eso no implica tan sólo matemáticas, lengua o literatura. “Muchas veces formamos a las personas para que sean grandes profesionales pero nos olvidamos de que antes tienen que ser personas. Y eso también quiere decir aprender a disfrutar de su tiempo libre. Aburrirse porque no tienen nada que hacer, trabajar muy rápido y mucho rato seguido” considera David Bueno.

Sabemos que no hay cerebro cognitivo que no haya sido filtrado por el cerebro emocional. Por tanto, insiste Mora, hay que buscar el significado emocional de lo que se enseña, para que el alumno piense: ‘Siga profesor contándome eso, que me interesa mucho’. “Los profesores tienen que ser la joya de la corona de un país, porque sobre sus espaldas recae una enorme responsabilidad. Tienen que estar muy formados y conseguir que los niños se sientan realmente entusiasmados por lo que aprenden. Porque esa es la base para crear no sólo ciudadanos cultos, sino también honestos y libres”.

 (este reportaje se publicó en la revista Quo México, en septiembre de 2014) [en línea] Barcelona (ESP):, 14 de mayo de 2015 [ref. 06 de octubre de 2014] Disponible en Internet:

Cost of Medical School

11 05 2015

Many people dream of becoming a doctor, but only a small percentage actually move down this path.

Those who are interested in this profession must answer a variety of questions, including but not limited to:

  • What type of doctor do I want to be?
  • How long will it take me to complete school?
  • What is the process of applying to medical school?
  • What is the average cost of attending medical school?
  • How long does it take, on average, for a doctor to pay back school loans?
  • What is the average doctor salary and career earnings?

While some people know the answers to each and every question, others are unsure of what the future holds and how they will be impacted if they continue to move forward with this career path.

For the sake of this article, we are going to focus on the financial side of becoming a doctor. This includes everything from the cost of medical school to how to secure financing for tuition to average salaries and career earnings.


Your Time in School and Training

To become a physician in the United States, you are required to complete many educational requirements.

As you get started, you must receive a four year degree from a college or university, typically in the area of science.

From there, you will move onto medical school. Known as an undergraduate medical education, this entails four years of education at an institution accredited by the Liaison Committee on Medical Education (LCME). Upon completion, a student will earn a doctor of medicine degree.

Once medical school is complete, you will complete a residency program that lasts between three and seven years. From there, a fellowship is completed. This additional training is not required, but is for doctors who want to become highly specialized in a particular field.

As this is a lot of schooling, the cost of obtaining a medicine degree can quickly add up.


What is the Cost of Medical School?



Just the same as an undergraduate education, the cost of medical school differs from one institution to the next.

The Association of American Medical Colleges tracks the average cost of medical school, noting that during the 2013-14 school year, the annual tuition and fees at public medical schools averaged:

  • $31,783 for state residents
  • $55,294 for non-residents

Students who attend a private medical school find tuition and fees much higher, reaching:

  • $52,093 for state residents
  • $50,476 for non-residents

Use these approximate numbers, the average cost of medical school, over a four-year period, ranges from $127,132 on the low end to $221,176 on the high end.


How to Afford Medical School

Even though the cost of medical school can be high, loans, grants, and scholarships are available. Some are merit based, while others are need based.

Most medical students borrow some money to finance their education. The Association of American Medical Colleges noted that the “median debt for graduating students was $175,000.

There are many types of federal loans to consider, including the Stafford loan, Perkins loan, and PLUS loan.

Scholarships and grants are also available, both from the government as well as the individual institution. Any free money you receive will reduce the amount of debt you take on.


Average Salary

There is no denying the fact that medical school is expensive. As noted above, most students leave school with nearly $200,000 in debt.

Here is the good thing: doctors have a high earning potential, meaning that loans can be paid back sooner rather than later. From there, once the debt is gone, it is easy to realize that all of the schooling was worthwhile.

The Association of American Medical Colleges notes that the average salary for a family medicine doctor in 2013 was $161,000.

Forbes outlined the best and worst paying jobs for doctors, with orthopedic surgeons at the top of the list, thanks to an average salary of $519,000.


Final Word

The cost of medical school is extremely high. Furthermore, it takes many years for a student to complete the necessary education to become a doctor.

When everything is said and done, doctors are among the highest paid professionals. For many, this is enough to cancel out the cost of their education.



Article provided by:

Mr Sasha Boyd

Outreach Director [en línea] Seminole, FL (USA):, 11 de mayo de 2015 Disponible en Internet:


Tecnología espacial para reducir la ceguera por degeneración macular

7 05 2015

El Laboratorio de Óptica diseña unas lentes con tecnología de telescopios espaciales capaces de reducir hasta en un 40% la ceguera provocada por la degeneración macular asociada a la edad.


La revista ‘Biomedical Optical Express’ acaba de presentar este gran avance tecnológico que posibilita un tratamiento quirúrgico contra la primera causa de pérdida total de la vista en mayores de 55 años. Los minitelescopios iolAMD, diseñados por el equipo del catedrático Pablo Artal en colaboración con el Dr. Qureshi del London Eye Hospital Pharma, se implantan en diez minutos y sin necesidad de suturas al ser los primeros fabricados con un material flexible.

Miles de afectados por degeneración macular asociada a la edad (DME) podrán volver a conducir, leer, ver la televisión y reconocer caras gracias al último avance óptico creado por el Laboratorio de Óptica de la Universidad de Murcia (LOUM). El equipo de investigación que dirige Pablo Artal, catedrático de Óptica y reconocido experto mundial en óptica adaptativa, se ha servido de tecnología propia de los telescopios espaciales para crear unas lentes intraoculares capaces de disminuir la pérdida de visión progresiva e irreversible que padecen los afectados por este grave trastorno ocular.

La degeneración macular asociada a la edad es la primera causa de ceguera en mayores de 55 años en países occidentales, con más de 25 millones de enfermos en todo el mundo. El paciente pierde la visión central al dañarse los vasos sanguíneos que irrigan la mácula, una zona de la retina que se encarga de que nuestra vista sea más nítida y pueda apreciar los detalles. Los enfermos con DME en fase aguda estaban condenados a la ceguera al no existir un tratamiento farmacológico ni quirúrgico eficaz y seguro. Hasta hoy.

La prestigiosa revista científica ‘Biomedical Optical Express’ describe en su último número el avance tecnológico que el equipo de investigación del físico Pablo Artal ha desarrollado para obtener los minitelescopios en estrecha colaboración con el doctor Qureshi, director y fundador del célebre London Eye Hospital (Reino Unido). El propósito de este afamado oftalmólogo era intervenir a los afectados por DME utilizando el mismo tipo de microcirugía que se emplea en la operación de cataratas.


Inspirados por Galileo Galilei

“Nos inspiramos en el primer telescopio que construyó Galileo Galilei en 1609 para demostrar que la Tierra giraba alrededor del Sol. Es un telescopio de refracción, con una lente positiva y otra negativa. A partir de ahí resolvimos los problemas que presentaban otros procedimientos ópticos fallidos para tratar la DME que también reproducen el telescopio de Galileo. La principal ventaja que aportan nuestras lentes radica en que hemos sido capaces de fabricarlas con un material flexible, que se inyecta en el ojo a través de una incisión tan pequeña que no requiere de suturas, lo que reduce considerablemente el riesgo de infección y las complicaciones posoperatorias. Es como dar el salto de una operación a corazón abierto a un corte del tamaño de la ranura de un cerradura”, detalla el profesor Artal.

Otra de las innovaciones que convierten a estos minitelescopios en un prometedor tratamiento consiste en la aplicación de ópticas modificadas. El profesor Artal precisa que “las lentes iolAMD desplazan la visión del paciente hacia el área periférica del ojo, evitando así la zona central dañada. De esta forma, el paciente controla su visión sin necesidad de girar bruscamente la cabeza cada vez que enfoca un objeto y, además, el diseño óptico avanzado soluciona graves problemas de adaptación a las particularidades que posee cada ojo”, detalla el profesor Artal.

En la actualidad se están realizado ensayos clínicos en más de 200 pacientes del Reino Unido, Alemania e Italia. Los receptores de estos innovadores minitelescopios han experimentado una mejora de la visión de entre un 20% y un 40%, de acuerdo a los datos preliminares que maneja el London Eye Hospital. El catedrático de Óptica de la UMU remarca que “no se trata de una cura, pero devolver ese porcentaje de visión a una persona con DME puede significar darle la oportunidad de volver a conducir o leer”. No obstante, los resultados definitivos de dichos ensayos clínicos se validarán en breve con su publicación en acreditadas revistas científicas.


Vídeo : [en línea] Murcia (ESP):, 07 de mayo de 2015 [ref. 13 de marzo de 2015] Disponible en Internet:


Scientists unravel the complex brain mechanisms responsible for tinnitus

4 05 2015

Scientists have undertaken a unique study to help them unravel the complex brain mechanisms responsible for tinnitus.

Dr William Sedley, from Newcastle University’s Institute of Neuroscience

For the first time, researchers have recorded directly from the brain of someone with the condition to find the brain networks linked to causing the debilitating problem in order to gain a better understanding of the issue.

Dr William Sedley, from Newcastle University’s Institute of Neuroscience, co-led the international research with Dr Phillip Gander, from the University of Iowa in America. Their research contrasted brain activity during periods when tinnitus was relatively stronger and weaker.

The research was only possible because the 50-year-old man they studied required invasive electrode monitoring for epilepsy. He also happened to have a typical pattern of tinnitus, including ringing in both ears, in association with hearing loss.

Findings of the research, which are today (April 23) published in the Cell Press journal Current Biology, shed new light on the mechanisms of tinnitus and it is hoped that this will eventually lead to better treatments for patients.

The researchers found the expected tinnitus-linked brain activity, but they report that the unusual activity extended far beyond circumscribed auditory cortical regions to encompass almost all of the auditory cortex, along with other parts of the brain.

Dr Sedley said: “This is a big step forward in our understanding of tinnitus, as it is the first time we have been able to clearly associate the patient’s own subjective experience of tinnitus with direct and precise measurements of brain activity.

“Perhaps the most remarkable finding was that activity directly linked to tinnitus was very extensive, and spanned a large proportion of the part of the brain we measured from. In contrast, the brain responses to a sound we played that mimicked the tinnitus were localised to a tiny area.

“We hope that the extra amount of knowledge we have gained will indirectly help us to develop more treatments for patients in the future. For Newcastle University to collaborate with scientists in America reflects the great work that’s going on into this common condition.”

Approximately one in five people experience tinnitus, the perception of a sound – often described as ringing – that isn’t really there. In the UK it is estimated that around six million people have mild tinnitus, with around 600,000 experiencing it to the severity where their quality of life is affected.

The study may help to inform treatments such as neurofeedback, where patients learn to control their ‘brainwaves’, or electromagnetic brain stimulation, according to the researchers. A better understanding of the brain patterns associated with tinnitus may also help point towards new pharmacological approaches to treatment.

Dr Sedley, who also works for Newcastle Hospitals NHS Foundation Trust’s neurology department, added: “We now know that tinnitus is represented very differently in the brain to normal sounds, even ones that sound the same, and therefore these cannot necessarily be used as the basis for understanding tinnitus or targeting treatment.”

Studies on the patient took place in the University of Iowa’s Institute for Clinical and Translational Science, where patients requiring epilepsy surgery are often studied for up to two weeks with electrodes implanted in their brains, in order to locate the part of the brain responsible for the epilepsy so that it can be removed.

Dr Gander said: “It is such a rarity that a person requiring invasive electrode monitoring for epilepsy also has tinnitus that we aim to study every such person if they are willing.

“The sheer amount of the brain across which the tinnitus network is present suggests that tinnitus may not simply ‘fill in’ the ‘gap’ left by hearing damage, but also actively infiltrates beyond this into wider brain systems.”

The research was funded by the Wellcome Trust and Medical Research Council in the UK, and the National Institutes of Health in the USA. At present the research is based on a single patient, but over time the researchers are hopeful of being able to study more patients with tinnitus in a similar way.

Dr Ralph Holme, Action on Hearing Loss Head of Biomedical Research, said: “Tinnitus is a debilitating condition, for which there is currently no cure.

“We welcome investment and research into tinnitus as the mechanisms behind it are still not fully understood and more progress is needed to improve the chances of effective treatments in the future.”


Case study

Father-of-two Lindsay Waddell has suffered from tinnitus for 10 years and welcomes the new research.

The head gamekeeper has spent most of his life working on farms and believes the constant noise of heavy machinery has contributed towards his condition.

Mr Waddell, 64, from Middleton-in-Teesdale, County Durham, said: “My tinnitus has got worse over the years and it sounds like a constant hissing in my ears. Since I was a teenager I’ve been surrounded by the loud noise of farm machinery and I think this has damaged my hearing.

“I’m delighted that this research has been carried out as it’s a great step forward in understanding tinnitus, which will hopefully help lead to the development of new treatments in the future for those suffering the condition.

“Newcastle University is often leading the way with research and this is another example of that.” [en línea] Newcastle (UK):, 04 de mayo de 2015 [ref. 23 de abril de 2015] Disponible en Internet: